

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE BIOLOGÍA

Ejemplos de Crecimiento Exponencial Malthusiano.

En **1980**, el Departamento de Recursos Naturales liberó **1000** truchas hibridas (hibridación de trucha de lago y trucha de rio/arroyo) en un lago. En **1987**, se estimó que la población de truchas hibridas en el lago era de **3000**. Utilizando la ley Malthusiana para el crecimiento demográfico, estime la población de truchas hibridas en el lago en el año **2010**.

Para resolver este problema, es importante saber que la ley de Malthus es un modelo de crecimiento poblacional que asume que la **tasa de crecimiento de una población** es proporcional a su **tamaño poblacional**. También cabe señalar que este modelo asume las condiciones ideales de crecimiento sin adversidades como son las presas y límites de espacio y/o alimento.

$$\frac{dy}{dt} = ry$$

Donde:

- y es la población de truchas hibridas en tiempo t, y es función de t, es decir v(t).
- r es una constante de proporcionalidad que representa la tasa de crecimiento
- t es el tiempo.

Paso 1: Solución General

La solución a esta ecuación diferencial es:

$$y(t) = y_0 e^{rt}$$

Donde:

- y₀ es la cantidad inicial de truchas hibridas.
- y(t) es la cantidad de truchas en el tiempo t.
- r es la tasa de crecimiento.

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE BIOLOGÍA

Esta solución en el paso 1 se da porque:

 $\frac{dy}{dt} = ry$ se rescribe por el método de variables separables, quedando

$$\frac{1}{v}\frac{dy}{dt} = r$$

Multiplicamos ambos lados por dt para separar las variables:

$$\frac{1}{y}dy = r dt$$

De ahí se integran ambos lados de la ecuación, para encontrar la expresión de **y(t)**:

$$\int \frac{1}{y} dy = \int r dt$$

$$|ln|y| = rt + C$$

Donde C es la constante de integración.

Finalmente se despeja **y** en términos de **t**, elevando ambos lados

$$e^{\ln |y|} = e^{rt+C}$$

Podemos reescribir e^{rt+C} como:

$$|\mathbf{v}| = e^{rt} \cdot e^{C}$$

Aquí, $m{e^C}$ es simplemente otra constante que podemos llamar $m{y_0}$ (la cantidad inicial) quedando finalmente

$$y(t) = y_0 e^{rt}$$

Paso 2: Determinación de la Constante r.

Sabemos que:

- En 1980 (t=0), la población *y(0)* =1000.
- En 1987 (t=7), la población *y(7)* =3000

Podemos usar estos datos para determinar el valor de r.

Sustituyendo en la ecuación general quedaría:

t=0 es la población inicial en 1980.

t=7 es la población en 1987 debido a que pasaron 7 años de la población inicial.

t=30 es la población en 2010 debido a que pasaron 30 años de

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE BIOLOGÍA

Paso 3: Encontrar r.

Despejando e^{7r} queda:

$$e^{7r}=\frac{3000}{1000}=3$$

Tomamos el logaritmo natural en ambos lados para resolver r:

$$7r = \ln(3)$$

$$r=\frac{\ln(3)}{7}\approx 0.1569$$

La constante de crecimiento r calculada es aproximadamente 0.1569 por año.

Paso 4: Estimar la Población en 2010.

Una vez que tenemos r, podemos estimar la población para el año 2010 (30 años desde 1980) sustituimos:

$$y(t) = y_0 e^{rt}$$

$$y(30) = 1000e^{30(0.1569)}$$

$$y(30) = 110,868$$

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE BIOLOGÍA

Resultado

La estimación para 2010, según el modelo, es de aproximadamente 110,868 truchas híbridas en el lago.

Ejercicio modificado, de la página 105 de:

Nagle K, Saff E, Snider A. (2008). Fundamentals of Differential Equations and Boundary Value Problems. Pearson. 5th Edition. USA. pp. 862