UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE BIOLOGÍA

MODELO LOGISTICO

Considérese una población cuyo crecimiento está afectado por el ambiente que le impone un límite superior a su tamaño máximo. Esta limitante puede estar dada por espacio, alimento o zonas de reproducción, entre otros factores del medio. El modelo que considera esta restricción está dado por:

$$\frac{dy}{dt} = ky(A - y)$$

La tasa de cambio es proporcional a la población existente y al valor máximo, A, menos la población existente.

Donde k es una constante positiva, con la variable y tomando valores desde 0 hasta un valor máximo A, para $t \ge 0$, esto se representa como: 0 < y < A; $t \ge 0$.

Para resolver esta ecuación se agrupan términos semejantes, de manera que

$$\frac{dy}{y(A-y)} = kdt \quad \Rightarrow \int \frac{dy}{y(A-y)} = \int kdt$$

Esto conduce a la fa fracción parcial

$$\frac{1}{y(A-y)} = \frac{1}{A}(\frac{1}{y} + \frac{1}{A-y})$$

Por lo que

$$\int \frac{dy}{y(A-y)} = \frac{1}{A} \int \left(\frac{1}{y} + \frac{1}{A-y}\right) dy = \frac{1}{A} \left(\int \frac{1}{y} dy + \int \frac{1}{A-y} dy\right) = \frac{1}{A} (\ln|y| - \ln|A-y|) + c_1$$

De manera que

$$\int \frac{dy}{y(A-y)} = \int kdt$$

$$\frac{1}{A}(\ln|y| - \ln|A - y|) + c_1 = kt + c_2$$

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES ZARAGOZA CARRERA DE BIOLOGÍA

Multiplicando por (-1), ambos lados de la ecuación

$$\ln|A - y| - \ln|y| = -Akt - Ac_2$$

$$\ln \frac{|A - y|}{|y|} = -Akt - Ac_2$$

$$\ln\left|\frac{A-y}{y}\right| = -Akt - Ac_2$$

$$\left|\frac{A-y}{y}\right| = e^{-Akt}e^{-Ac_2}$$

Como 0 < y < A, el cociente $\frac{A-y}{y} > 0$ y se puede omitir el valor absoluto. Si además se agrupan las constantes, de manera que $B = e^{-Ac_2}$. Se tiene, entonces, que.

$$\frac{A-y}{y} = Be^{-Akt}$$

$$A - y = Bye^{-Akt}$$

$$A = y(1 + Be^{-Akt})$$

Por lo que

$$y_t = \frac{A}{1 + Be^{-Akt}}$$

Al considerar y = f(t) se puede generalizar el modelo, de manera que

$$f(t) = \frac{A}{1 + Be^{-Akt}}$$

Donde se tienen tres constantes o parámetros: A, B y k positivas.

Propiedades de f(t)

$$1) \lim_{t \to \infty} f(t) = A$$

2)
$$f(0) = \frac{A}{1+B}$$

3) Punto de inflexión en
$$t = \frac{1}{Ak} \ln B$$