

	Cuadro de concentraciones de reacciones en equiibrio y cuantitativas					
		aA	bB	\leftrightarrow	cC	dD
	Inicio	Co				
	Agregando		хCo			
x< 2 1	A.P.E	CO (1 - 1 x)	О		2 2 xCo	3 2 xCo
x =1	P.E	εСο	2 1 εCο		2 1 Co	3 1 Co
x>1	D.P.E	0	Co (x- 2)		2 Co	3 Co

Insertar coeficentes				
a	1.0			
b	2.0			
С	2.0			
d	3.0			

Dr. Juan Carlos Vázquez Lira 2021

Con apoyo del programa DGAPA-UNAM-PAPIME PE-202021

bmoles de A = a moles B

aA + bB = cc + dD

Micio Co

Agreg.

ХCo

,

Co(1-0x) ~0

X = moles Bagreg

Moles de Aincio

moles B = b moles de A

Micio Co

Ag.
$$XCo$$

APE $Co(1-\frac{9}{4}x)$ o $\frac{c}{6}X(o)$ $\frac{d}{b}X(o)$

PE ECo $\frac{b}{a}ECo$ $\frac{c}{a}Co$ $\frac{d}{a}Co$

DPE $Co(x-\frac{b}{a})$ $\frac{c}{a}Co$ $\frac{d}{a}Co$

	Cuadro de concentraciones de reacciones en equilbrio y cuantitativas					
		аА	ьв	\leftrightarrow	cC	dD
	Inicio	Со				
	Agregando		жСо			
x < 2	A.P.E	Co (1 - 1 x)	o		2 xCo	3 2 xCo
x = 2	P.E	εCο	2 1 εCο		2 1 Co	3 1 Co
x>1	D.P.E	0	Co (x- 2)		2 Co	3 Co

Insertar coeficentes				
а	1.0			
b	2.0			
c	2.0			
d	3.0			

Dr. Juan Carlos Vázquez Lira 2021
Con apoyo del programa DGAPA-UNAM-PAPIME PE-202021

C: Resetea

	Cuadro de concentraciones de reacciones en equlibrio y cuantitativas					
		aA	bB	\leftrightarrow	cC	dD
	Inicio	Со				
	Agregando		хСо			
x< 3	A.P.E	Co (1 - 1/3 x)	0		2 3 xCo	3 3 xCo
x = 1	P.E	εСο	3 1 εCο		2 1 Co	3 1 Co
x> 3	D.P.E	0	Co (x-\frac{3}{1})		2 1 Co	3 Co

Insertar coeficentes				
а	1.0			
b	3.0			
С	2.0			
d	3.0			

Dr. Juan Carlos Vázquez Lira 2021

Con apoyo del programa DGAPA-UNAM-PAPIME PE-202021

	Cuadro de concentraciones de reacciones en equlibrio y cuantitativas					
		aA	bB	\leftrightarrow	cC	dD
	Inicio	Со				
	Agregando		хCo			
x< 1	A.P.E	Co (1 - 1 x)	0		1 xCo	1 xCo
x = - 1 1	P.E	εCο	1 1 εCο		1 Co	1 1 Co
x>1	D.P.E	0	Co (x- 1)		1 Co	1 Co

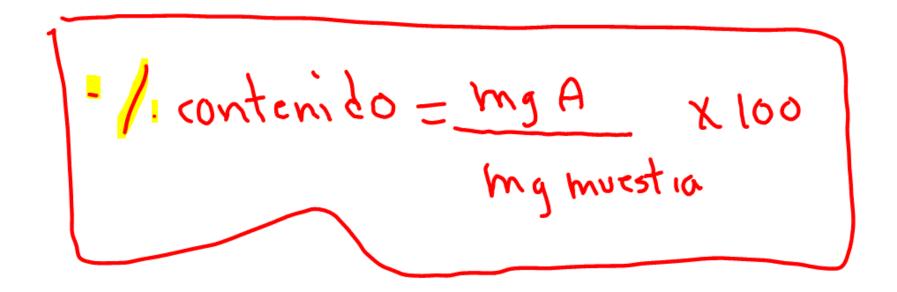
Insertar coeficentes				
а	1.0			
b	1.0			
С	1.0			
d	1.0			

Dr. Juan Carlos Vázquez Lira 2021

Con apoyo del programa DGAPA-UNAM-PAPIME PE-202021

Titulación directa B=slnstandande aA + bB -> productos bmales A = a moles B $\frac{mA}{MA} = \frac{\alpha M_B V_B}{mA} \left(\frac{M_B V_B}{M} \right) \left(\frac{M_A}{M} \right)$ $gA = \frac{a}{b} \left(\frac{yw}{x} \times X \right) \left(\frac{g}{mol} \right)$

 $gA = (MB)(VB)(\frac{a}{b})(MA)$ (ontenido


Materia prima (excipientes y principios activos)

-/ Contenido 9 muestra 9 muestra tienen mas de componentes I tubleta equivale 500 mg P.a. I tableta pesa = 750 mg excipientes

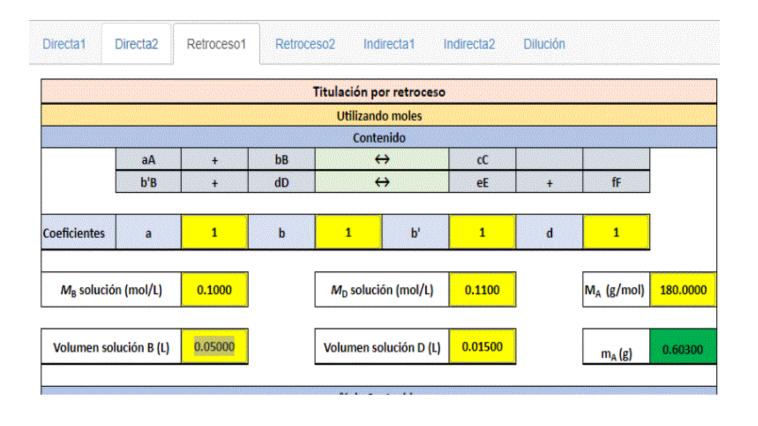
500mg AAS 1 table = 750 mg/ eson 500 mg polvo = m muestra · / continido = contenido =

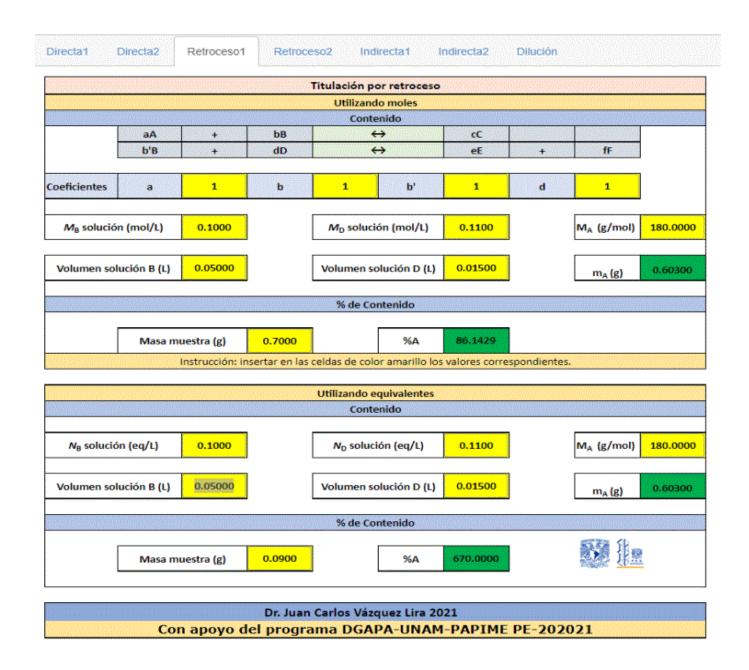
500 mg 1 table = 750 mg 500 mg polvo = m mvestra · / continido = contenido = XLOO

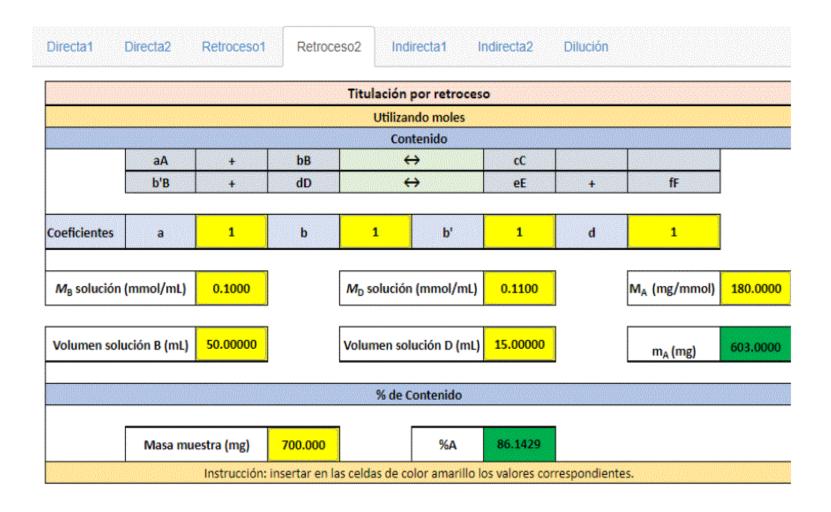
mucstra -/. Contenido

Titulación por retroceso. Rx1 aA + bB -> produc. + Bexceso Rxz bB + dD -> productos reactivo titulante

b moles de A = a moles B Rx, d moles de B = b'moles D Rxz


d moles
$$B = \frac{b'}{d}$$
 (MDVO)


Moles
$$A = \frac{gA}{MA}$$


$$gA = \left[\frac{a}{b} MA \left(\frac{MBVB - \frac{b'}{d} MDVD}{MDVD}\right)\right]$$

$$gA = \left[\frac{a}{b} \frac{g}{MbL} \left(\frac{MBVB - \frac{b'}{d} MDVD}{MbL}\right)\right]$$

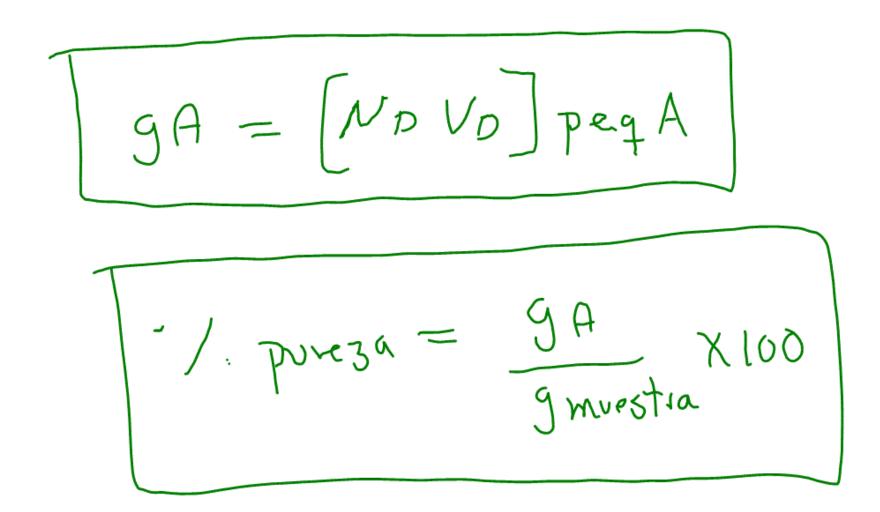
$$= 0.6039$$

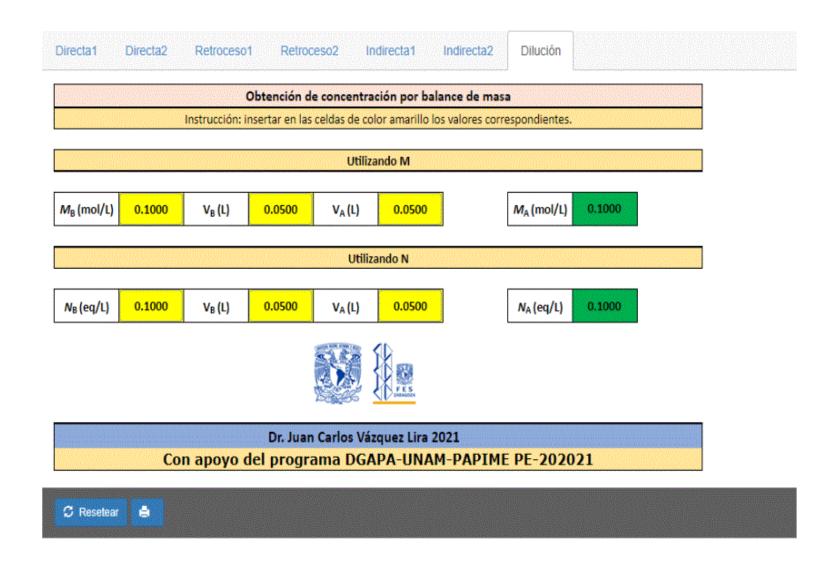
Titolación indirecta.

Rx, aA + bB _ CC + e E

Rxz c'C + dD - productos

Rx, c moles A = a moles de C moles A = a moles de C RXZ


d moles C = c' moles Dmoles C = c' moles Dmoles C = c' MD VD


Molcs de
$$A = \frac{q}{c} \left[\frac{c'}{d} M_D V_D \right]$$

$$\frac{g_A}{MA} = \frac{q}{c} \left[\frac{c'}{d} M_D V_D \right]$$

$$\frac{g_A}{d} = \frac{q}{c} \left[\frac{c'}{d} M_D V_D \right] M_A$$

$$\frac{g_A}{g_C} \left[\frac{c'}{d} M_D V_D \right] M_A$$

$$PH = -\log \Omega_{H30} +$$

$$= -\log \Omega_{H30} + \left[H_{30}\right]$$

$$\mathcal{J}_{H30} + \mathcal{J}_{H30} + \left[H_{30}\right]$$

$$V_{A} = V_{A} + V_{A} = V_{A} + V_{A} + V_{A} + V_{A} = V_{A} + V_{A} + V_{A} + V_{A} = V_{A} + V_{A} + V_{A} + V_{A} + V_{A} + V_{A} = V_{A} + V_{A$$

$$PXa = -\log Xa$$

$$PXb = -\log Xb$$

$$PKw = -\log Xw$$

$$Q 25^{\circ}C$$

$$-14$$

$$PXw = 14$$

$$Xw = 10$$

$$Xw = 1 \times 10$$

$$\left\{ \begin{bmatrix} H_{30} + J \begin{bmatrix} OHJ \end{bmatrix} = KW \right\} - \log \right\}$$

$$- \log \begin{bmatrix} H_{30} + J \end{bmatrix} - \log \begin{bmatrix} OHJ \end{bmatrix} = -\log KW$$

$$PH = POH = PKW$$

$$PH = IY - POH$$

$$PH = IY + \log \begin{bmatrix} OHJ \end{bmatrix}$$