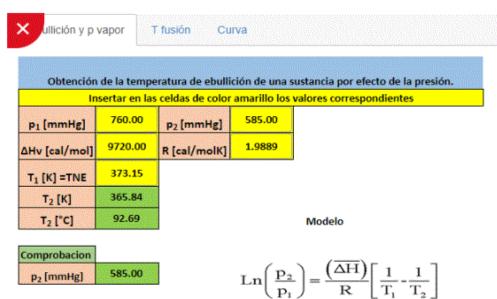
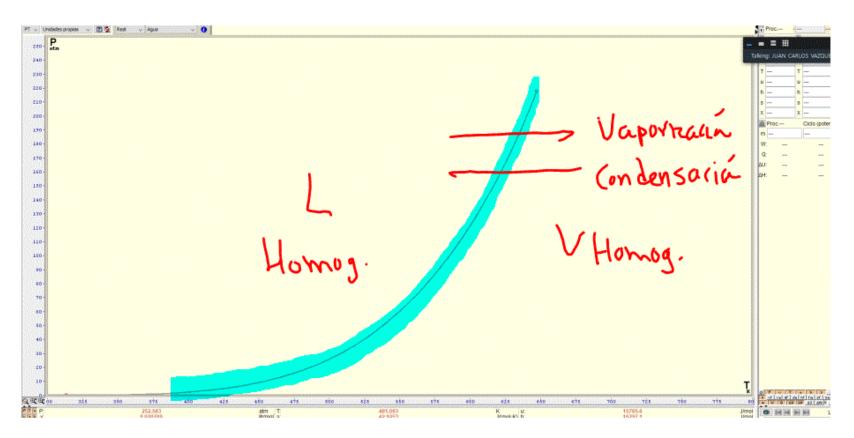
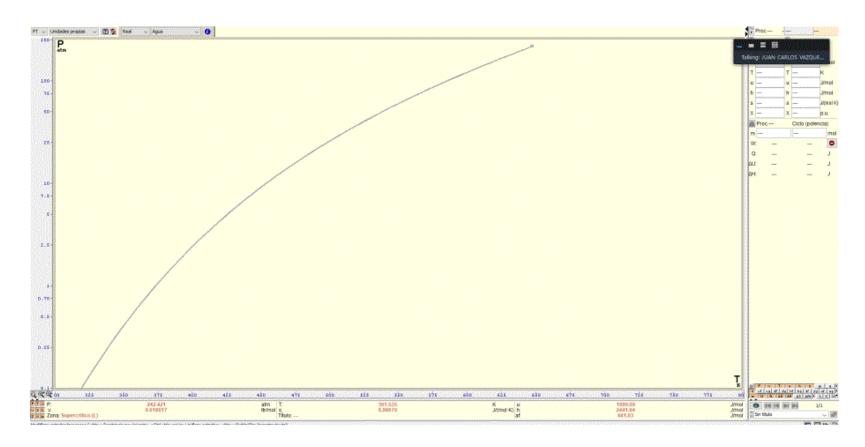
Clase 79 13 Enevo 2021

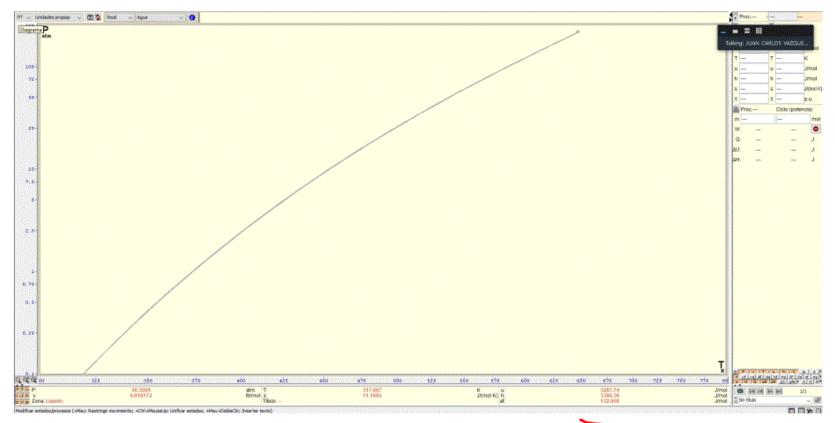

Título de la nota 13/01/2021

$$\ln\left(\frac{P^2}{P_1}\right) = \frac{\Delta Hv}{R} \left[\frac{1}{T_1} - \frac{1}{T_2}\right]$$

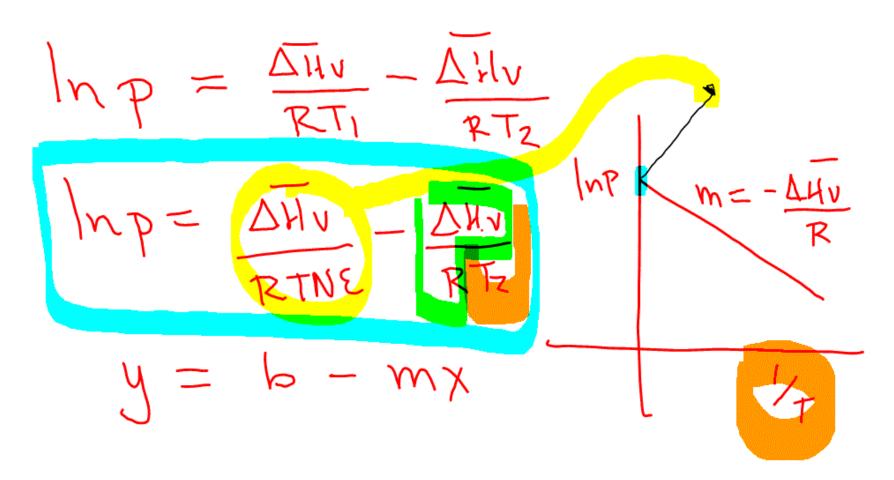
$$T_1 = +N\varepsilon \quad P_1 = latm$$


$$\frac{\ln(P^{2}P^{1})}{\Delta H v} = \frac{1}{T_{1}} - \frac{1}{T_{2}}$$


$$-\frac{\ln(P^{2}P^{1})}{\Delta H v R} - \frac{1}{T_{1}} = \frac{1}{T_{2}}$$



Obtención de la presión de vapor de una sustancia por efecto de la temperatura. Insertar en las celdas de color amarillo los valores correspondientes 760.00 p₂ [mmHg] 585.01 p₁ [mmHg] 9720.00 1.9889 ΔHv [cal/mol] R [cal/molK] 373.15 T₁ [K] =TNE 365.84 T2 [K] Comprobacion 365.84 T₂ [K]


Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2021 V2
Con apoyo del programa UNAM-DGAPA-PAPIME PE-200419

$$ln(P^2) = \Delta I \left[\frac{1}{T_1} - \frac{1}{T_2} \right]$$

S-L Fusion

$$M^{s} = M^{L}$$
 $\overline{V}_{s}dp - \overline{S}_{s}dT = \overline{V}_{L}dp - \overline{S}_{L}dT$
 $\left(\overline{V}_{L} - \overline{V}_{s}\right)dp = \left(\overline{S}_{L} - \overline{S}_{s}\right)dT$
 $\Delta V_{F}dp = \Delta S_{F}dT$
 $\Delta V_{F} < O$
 $\overline{V}_{S} > \overline{V}_{L}$
 $\overline{A}_{V} = \overline{V}_{S} = \overline{V}_{L}$

$$\Delta SF = \Delta HF$$

$$\Delta VF dP = \Delta HF$$

$$\Delta VF dT$$

$$P = \frac{N}{m^2} = Paxad$$

$$P^2 - P^1 = \frac{\Delta HF}{\Delta VF} \left[N \left(\frac{T_2}{T_1} \right) \right]$$

$$\frac{\Delta HF}{m^2} = \frac{J}{mod} = \frac{N \cdot m}{mod}$$

$$\frac{\Delta HF}{mod} = \frac{N \cdot m}{mod}$$

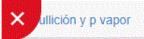
$$\frac{\Delta HF}{mod} = \frac{N \cdot m}{mod}$$

$$\frac{\Delta HF}{mod} = \frac{N \cdot m}{mod}$$

$$\Delta V_F = V_L - V_S \qquad S = Hielo I$$

$$\rho_L = \frac{l_0}{cm^3} = 4^{\circ}C$$

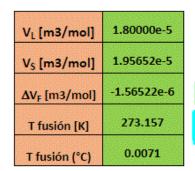
$$S = \frac{0.929}{cm^3} \qquad \Delta V_F = \left(\frac{l}{\rho_L} - \frac{l}{\rho_S}\right) \frac{sm^2}{g} \left(\frac{lm^3}{l0^6m^3}\right) \left(\frac{18g}{m^3}\right)$$


$$\frac{l_0}{l_0} = \frac{l_0}{l_0} = \frac{l_0}$$

$$\frac{N}{m^2} = \frac{7a}{m^2}$$

$$P^{2-P1} = \frac{\Delta H_F}{\Delta V_F} \Big|_{N} \frac{T_z}{T_1}$$

$$\frac{P^{2-P1}}{\Delta H_F/\Delta V_F} = \int_{N} \frac{T_z}{T_1}$$


T fusión

Curva

Efecto de la presión en la temperatura de fusión de una sustancia pura Insertar en las celdas de color amarillo los valores correspondientes

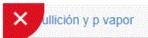
TNF (K)	273.150
ρ _S (g/cm3)	0.920
ρ _L (g/cm3)	1.000
p ₁ (mmHg)	760.00
p ₂ (mmHg)	10,00

p ₁ (Pa)	1.01325e+5
p ₂ (Pa)	1.33322e+3
ΔH _F [cal/g]	80.00
ΔH _F [J/mol]	6019.20
M (g/mol)	18.00

Modelo

$$p_2\text{-}p_1 = \frac{\overline{\Delta H}_F}{\overline{\Delta V}_F} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

donde
$$T_1 = TNF$$


Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2021 V2

Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419

$$\Delta H_{\mp} = \left(\Delta H_{\mp}\right)(M)$$

$$= \left(\frac{80 \text{ cal}}{9}\right)\left(\frac{189}{\text{mal}}\right)\left(\frac{4.18 \text{ J}}{\text{cal}}\right)$$

$$= \left(\frac{6019.2 \text{ J}}{\text{mol}}\right)$$

T fusión

Curva

Efecto de la presión en la temperatura de fusión de una sustancia pura

Insertar en las celdas de color amarillo los valores correspondientes

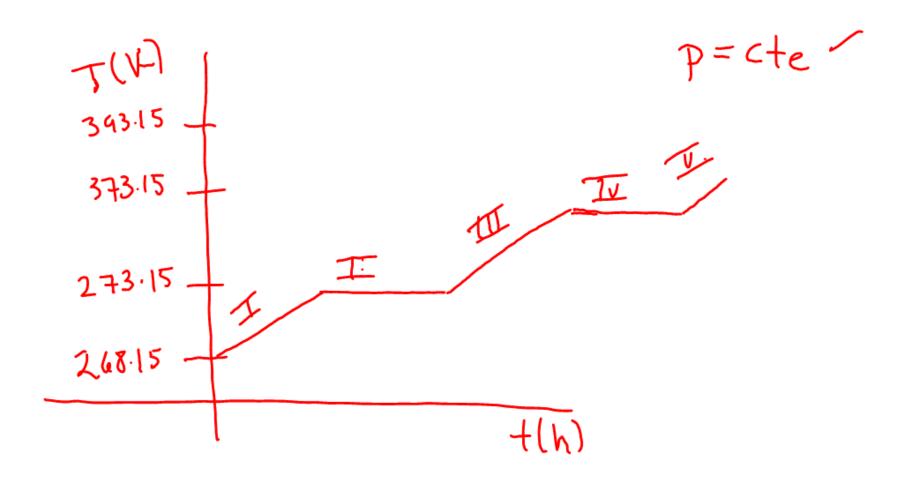
TNF (K)	273.150
ρ _S (g/cm3)	0.920
ρ _L (g/cm3)	1.000
p ₁ (mmHg)	760.00
p ₂ (mmHg)	2000000.0

p ₁ (Pa)	1.01325e+5
p ₂ (Pa)	2.66645e+8
ΔH _F [cal/g]	80.00
ΔH _F [J/mol]	6019.20
M (g/mol)	18.00

V _L [m3/mol]	1.80000e-5
V _S [m3/mol]	1.95652e-5
ΔV _F [m3/mol]	-1.56522e-6
T fusión [K]	254.859
T fusión (°C)	-18.2911

Modelo

$$p_2\text{-}p_1 = \frac{\overline{\Delta H}_F}{\overline{\Delta V}_F} \! \left(\frac{1}{T_1} \! - \! \frac{1}{T_2} \right) \label{eq:p2}$$


donde
$$T_1 = TNF$$

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2021 V2

Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419

268.15K — 5°C Hido ↓ latm 393.15K_.120°C Vapor

$$\Delta HI = N^{C}p(T_{Z}-T_{1})$$
 $T_{1}=268.15K$ $T_{2}=Z73.15K$
 $T_{3}=373.15K$ $T_{4}=393.15K$
 $\Delta HI = M^{C}p(T_{Z}-T_{1})$

$$\Delta N_{II} = (\overline{\Delta M}_{F})^{n}$$

$$(\overline{\Delta M}_{F})^{m}$$

$$\Delta H_{III} = n \overline{Cp_L} (T_3-T_2)$$

 $m \widehat{Cp_L} (T_3-T_2)$

$$\Delta H_{IV} = N \Delta H_{V}$$

$$= \alpha + bT + cT^{2}$$

$$= \alpha + bT + cT^{2}$$

$$+ dT^{3}$$

$$\Delta H_{I} = N \begin{bmatrix} a \end{bmatrix} dT + b \end{bmatrix} + d + c \begin{bmatrix} T^{2} dT + d \end{bmatrix} T^{3} dT$$

$$T_{3} = T_{3} = T_{3} = T_{3} = T_{3}$$