

Obtención de la presión de un gas con el modelo tipo Redlich-Kwong Introducir los valores en las celdas de color amarillo Tc (K) 190.56 V sistema (L/mol) 2.0000 Modelo pc (atm) 45.3866 a (atmL2K0.5/mol2) 31.7681 b (L/mol) 0.0298 R (atmL/molK) 0.082 T sistema(K) 250.00 p ideal (atm 10.2500 p real (atm) 9.9104 Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020 Con apoyo del programa UNAM-DGAPA-PAPIME PE-200419

09/12/2020

$$T^{3} - T \frac{\left[p^{2} \left(\overline{V} - b\right)^{2}\right]}{R^{2}} - \frac{\alpha^{2} \left(\overline{V} - b\right)^{2}}{R^{2} \left(\overline{V}^{2} + \overline{V}b\right)^{2}} = 0$$

$$\begin{array}{l}
\boxed{P + a \\ (\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) = RT \\
\boxed{P (\overline{v}^2 + \overline{v}b) \top^{0.5} + a } (\overline{v} - b) = RT \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } = RT \\
\boxed{P (\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{v} - b) + \underline{o (\overline{v} - b)} \\
\boxed{(\overline{v}^2 + \overline{v}b) \top^{0.5} } (\overline{$$

$$\frac{P(\bar{v}^{2} + \bar{v}b)T^{0.5}(\bar{v}-b)}{(\bar{v}^{2} + \bar{v}b)T^{0.5}} + \frac{\alpha(\bar{v}-b)}{(\bar{v}^{2} + \bar{v}b)T^{0.5}} = RT^{(1.5)}$$

$$\frac{P(\bar{v}-b)T^{0.5} + \alpha(\bar{v}-b)}{R(\bar{v}^{2} + \bar{v}b)} = T^{1.5}$$

$$\frac{P(\bar{v}-b)T^{0.5} + \alpha(\bar{v}-b)}{R(\bar{v}^{2} + \bar{v}-b)} = T^{1.5}$$

$$\frac{P(\bar{v}-b)T^{0.5} + \alpha(\bar{v}-b)}{R(\bar{v}^{2} + \bar{v}-b)} = T^{1.5}$$

$$T^{3} - T \left[\frac{p^{2}(\overline{v}-b)^{2}}{p^{2}} - \frac{a^{2}(\overline{v}-b)^{2}}{p^{2}(\overline{v}^{2}+\overline{v}b)^{2}} \right] = 0$$

$$K^{3} - K \left[\frac{(atm^{2})}{(atm)} \left(\frac{K}{mol} \right)^{2} \right] \left[\frac{\lambda}{mol} \right] K^{3} - K \left(\frac{K}{K^{2}} \right)$$

$$\alpha = \underbrace{atm^{2} K^{0.5}}_{mol^{2}} \left(\frac{atm^{2} K^{0.5}}{mol^{2}} \right) \left(\frac{L}{mol} \right)^{2} \left(\frac{L}{mol} \right)^{2} K^{2}$$

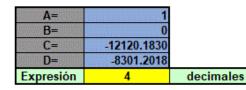
$$K^{3} - K \left[\frac{(atm^{2})^{2}}{(atm)^{2}} \right] \left(\frac{L}{mol} \right)^{2} \left(\frac{L}{mol} \right)^{2} K^{2}$$

$$\frac{atm^{2} K^{0.5}}{(mol)^{2}} \left(\frac{L}{mol} \right)^{2} \left(\frac{L}{mol} \right)^{2} K^{2}$$

Obtención de ecuación cúbica de la temperatura tipo Redlich-Kwong

Introducir los valores en las celdas de color amarillo

	Introducir id
Tc (K)	126.1500
V (L/mol)	2.0000
pc (atm)	33.5000
p sistema (atm)	4.5750
a (atmL2K0.5/mol2)	15.3476
b (L/mol)	0.0268
R (atmL/molK)	0.082



$$T^{3} - T \frac{\left[p^{2} \left(\overline{V} - b\right)^{2}\right]}{R^{2}} - \frac{a^{2} \left(\overline{V} - b\right)^{2}}{R^{2} \left(\overline{V^{2}} + \overline{V}b\right)^{2}} = 0$$

T ³	T ²	Т	Cte
1	0	-12120.1830	-8301.2018

T ideal (K)	111.5854
T real (K)	110.433

Resolución de la ecuación tipo AT3+BT2+CT+D=0

	Real	Imaginaria	
T1=	110.433	0.000	+110.4326
T2=	-109.748	0.000	-109.7476
T3=	-0.685	0.000	-0.6849

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020

Con apoyo del programa UNAM-DGAPA-PAPIME PE-200419

 $a = 0.4278 \, \text{p}^2 \, \text{T}_c^{2.5}$ p^c $b = 0.0867 \, \text{RT}_c$

$$p = \frac{RT}{\left(\overline{V} - b\right)} - \left[\frac{a}{\left(\overline{V}^2 + \overline{V}b\right)T^{0.5}}\right]$$

$$\overline{V}^3 - \overline{V}^2 \left[\frac{RT}{p} \right] - \overline{V} \left[b^2 + \frac{bRT}{p} - \frac{a}{pT^{05}} \right] - \left[\frac{ab}{pT^{05}} \right] = 0$$

$$\begin{bmatrix}
P + a \\
(\overline{v}^2 + \overline{v}b) T^{0.5}
\end{bmatrix} (\overline{v} - b) = RT$$

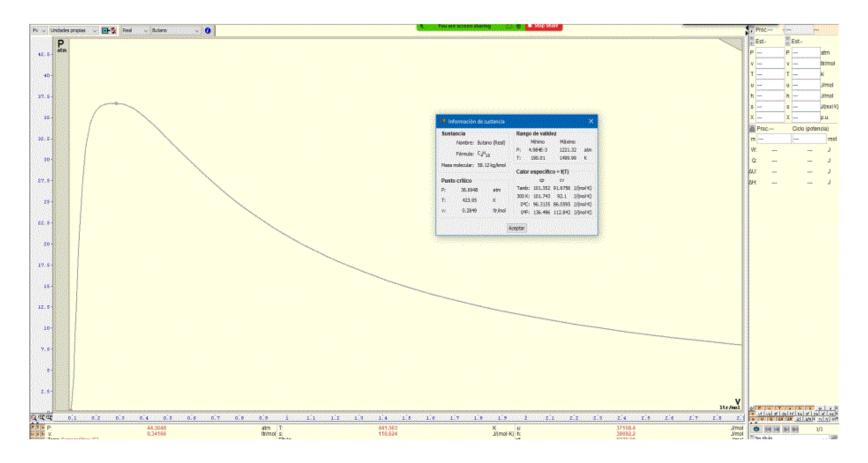
$$\begin{bmatrix}
P (\overline{v}^2 + \overline{v}b) T^{0.5} + a
\end{bmatrix} (\overline{v} - b) \\
(\overline{v}^2 + \overline{v}b) T^{0.5}
\end{bmatrix} = RT$$

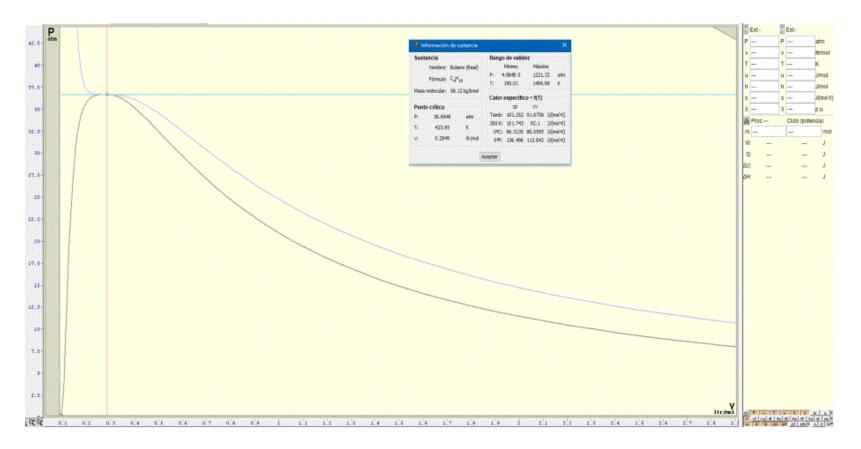
$$\begin{bmatrix}
P (\overline{v}^2 + \overline{v}b) T^{0.5}
\end{bmatrix} (\overline{v} - b) + a (\overline{v} - b)
\end{bmatrix} = RT$$

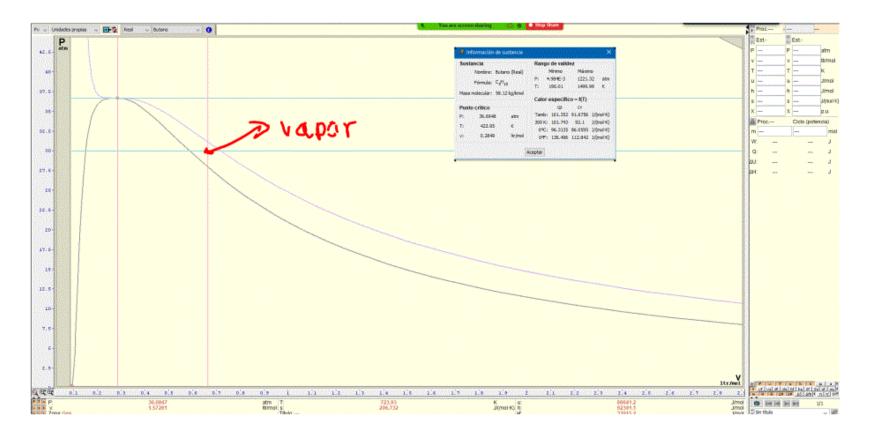
$$(\overline{v}^2 + \overline{v}b) T^{0.5}
\end{bmatrix} = RT$$

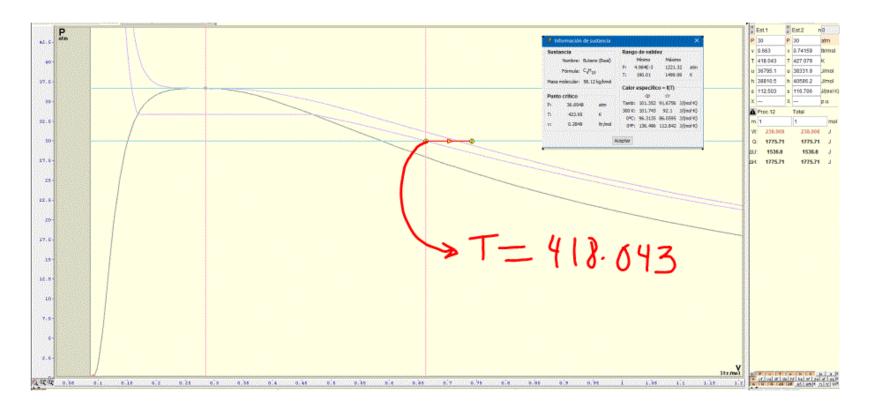
$$\frac{\left[p\left(\bar{v}^{2}+\bar{v}b\right)T^{0.5}\right]\left(\bar{v}-b\right)+a\left(\bar{v}-b\right)}{\left(\bar{v}^{2}+\bar{v}b\right)T^{0.5}} = RT$$

$$\frac{p\bar{v}^{3}T^{0.5}+p\bar{v}^{2}bT^{0.5}-p\bar{v}\bar{v}^{2}T^{0.5}-p\bar{v}b^{2}T^{0.5}+a(\bar{v}-b)}{p\left(\bar{v}^{2}+\bar{v}b\right)T^{0.5}} = RT$$


$$\frac{p\left(\bar{v}^{2}+\bar{v}b\right)T^{0.5}}{p\left(\bar{v}^{2}+\bar{v}b\right)T^{0.5}} = \frac{RT}{p}\left(\bar{v}^{2}+\bar{v}b\right)$$


$$\frac{r^{3}+r^{2}b-r^{2}b-r^{2}b-r^{2}b^{2}}{pT^{0.5}} = \frac{RT}{p}\left(\bar{v}^{2}+\bar{v}b\right)$$


$$\frac{r^{3}+r^{2}b-r^{2}b$$


$$\frac{-3}{V} - \frac{1}{V} \frac{1}{V} + \frac{aV}{PT05} - \frac{ab}{PT0.5} = \frac{RTV}{P} + \frac{RTV}{P}$$

$$\overline{V}^3 - \overline{V}^2 \left[\frac{RT}{p} \right] - \overline{V} \left[b^2 + \frac{bRT}{p} - \frac{a}{pT^{05}} \right] - \left[\frac{ab}{pT^{05}} \right] = 0$$

Obtención de ecuación cúbica de la temperatura tipo Redlich-Kwong

Introducir los valores en las celdas de color amarillo

Tc (K) 423.9500
V (L/mol) 0.6630
pc (atm) 36.6948
p sistema (atm) 30.0000
a (atmL²K^{0.5}/mol²) 290.1019
b (L/mol) 0.0821
R (atmL/molK) 0.082

Modelo 2

$$T^{3} - T \frac{\left[p^{2} \left(\overline{V} - b\right)^{2}\right]}{R^{2}} - \frac{a^{2} \left(\overline{V} - b\right)^{2}}{R^{2} \left(\overline{V}^{2} + \overline{V}b\right)^{2}} = 0$$

T ³	T ²	T	Cte
1	0	-45160.7386	-17302919.9183

T ideal (K) 242.5610 T real (K) 316.076

Resolución de la ecuación tipo AT3+BT2+CT+D=0

A=	1	
B=	0	
C=	-45160.7386	
D=	-17302919.9183	
Expresión	4	decimales

	Real	Imaginaria	
T1=	316.076	0.000	+316.0755
T2=	-158.038	172.531	158.0378+172.5313
T3=	-158.038	-172.531	-158.0378-172.5313j

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020

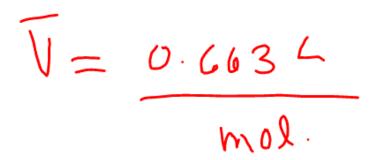
Con apoyo del programa UNAM-DGAPA-PAPIME PE-200419

Obtención de ecuación cúbica de la temperatura tipo Clausius

Introducir los valores en las celdas de color amarillo

	inti ouden io	S valores en las celaas de color amarine	
Tc (K)	423.95		
V sistema (L/mol)	0.66	Modelo	
pc (atm)	36.6948		
p sistema (atm)	30.0000	$(\overline{v}_{-}, \dots, \lambda) = a(\overline{V} - b)$	
a (atmL ² K/mol ²)	5890.4828	$T^2 - T\left(\frac{\overline{V}p - pb}{R}\right) - \frac{a(\overline{V} - b)}{R(\overline{V} + c)^2}$	
b (L/mol)	0.0481	(R) R(V+c)	
R (atmL/molK)	0.082		
c (L/mol)	0.0704		
Vc (L/mol)	0.2849		
T	² T	Cte	
1.00	000 -224.9798	-82135.3542	

T ideal (K) 242.5610 T real (K) 420.3687


Resolución de la ecuación tipo AT²+BT+C=0

A=	1.0000
B=	-224.9798
C=	-82135.3542

	real	imaginaria
T ₁	420.3687	
T ₂	-195.3889	

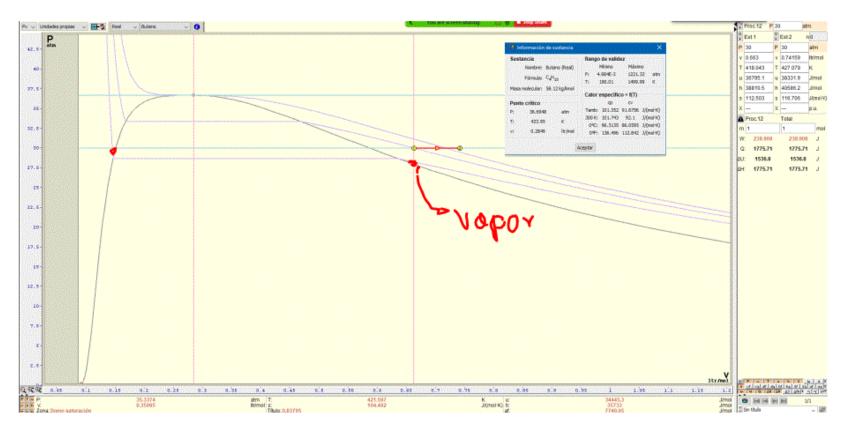
Propiedades

Vol real Independiente de Vo

Vol real dependiente de Vc

T y p dependiente de Vc

T y p Independiente de Vc


Obtención de Temperatura y presión comportamiento tipo Van der Waals

Introducir los valores en las celdas de color amarillo

Volumen (L)	0.6630
moles (n)	1.0000
presión (atm)	30.0000
a _M (atmL²/mol²)	13.8961
b _M (L/mol)	0.1184
R (atmL/molK)	0.082

T ideal (K)	242.56
T real (K)	409.17

