Clase 54 25 Noviembre 2020

Título de la nota

25/11/2020

$$pc = \frac{RTc}{Vc-b} - \frac{\sigma}{Vc^2}$$

$$pc = \frac{1}{3}Vc$$

$$pc = \frac{RTc}{Vc-b} - \frac{3pcVc^2}{Vc^2}$$

$$Vc = 3b$$

$$pc = \frac{RTc}{3b-b} - 3pc$$

$$pc = \frac{RTc}{3b-b} - 3pc$$

$$pc = \frac{RTc}{2b} - \frac{3pc}{2b}$$

$$b = L | mod$$

$$b = RTc$$

$$8 pc$$

$$P^{c} = \frac{RTc}{Vc-b} - \frac{a}{Vc^{2}}$$

$$P^{c} = \frac{RTc}{3b-b} - \frac{a}{(3b)^{2}}$$

$$P^{c} = \frac{RTc}{3b-b} - \frac{a}{9b^{2}}$$

$$P^{c} = \frac{9b^{2}RTc - 2ba}{(8b^{3})}$$

$$pc = \frac{9b^{2}RTc - 2ba}{18b^{3}}$$

$$18b^{3}pc = 9b^{2}RTc - 2ba$$

$$A = -\frac{18b^{3}pc + 9b^{2}RTc}{2b}$$

$$A = -9b^{2}pc + \frac{9}{2}bRTc$$

$$A = -9\left(\frac{RTc}{8pc}\right)^{2}pc + \frac{9}{2}\left(\frac{RTc}{8pc}\right)^{2}RTc$$

$$A = -9\left(\frac{RTc^{2}}{9pc}\right)^{2}pc + \frac{9}{2}\left(\frac{RTc}{8pc}\right)^{2}RTc$$

$$A = -9\left(\frac{R^{2}Tc^{2}}{64pc^{2}}\right)^{2}pc + \frac{9}{16}\frac{R^{2}Tc^{2}}{pc}$$

$$a = -9 \left(\frac{R^{2}T^{2}}{64pc^{2}} \right) pc + \frac{9}{16} \frac{R^{2}T^{2}}{pc}$$

$$a = -\frac{9}{64} \frac{R^{2}T^{2}}{pc} + \frac{9}{16} \frac{R^{2}T^{2}}{pc}$$

$$a = -\frac{9}{64} \frac{R^{2}T^{2}}{pc} + \frac{36}{64} \frac{R^{2}T^{2}}{pc}$$

$$a = -\frac{9}{64} \frac{R^{2}T^{2}}{pc} + \frac{36}{64} \frac{R^{2}T^{2}}{pc}$$

$$a = \frac{27}{64} \frac{R^{2}T^{2}}{pc} \left(\frac{\text{atmL/molk}}{\text{atm}} \right) (K)^{2}$$

$$= \frac{24mL^{2}}{mol^{2}}$$

Propiedades Fisicoquímicas de sustancias			
			····
Nombre		nitrógeno	
Masa Molar		28.013	g/mol
Temperatura	a Crítica	126.260	K
Presion Crít	ica	33.540	atm
Volumen Cr	rítico 0.0901 L/mol		
Punto ebulli	ción	77.400	K
Punto de fu	sión	63.300	K
Ср	(cal/mol K)	7.440e+0	а
Cp=a	+bT+cT ² +dT ³	-3.240e-3	b
(3	00-2500)K	6.400e-6	C
		-2.790e-9	d
Consta	ntes de Antonio	14.9342	A
LN(p)=A-(B/(T+C))	588.7200	<u> </u>
	T=K	-6.6000	C
	p=mmHg		

Femperatura Crítica	126.260	K
Presion Crítica	33.540	atm
/olumen Crítico	0.0901	L/mol

Nitrogeno (Tablas)
$$\alpha = \left(\frac{1.408 \text{ bar } L^2}{\text{mol}^2}\right) \left(\frac{\text{latm}}{1.013 \text{ bar}}\right) = 1.3899 \text{ atm } L^2$$

$$b = 0.03913 \text{ l/mol}$$

Dependiente de
$$Vc$$
 $A = 3pcVc^2 = 3(3.54atm)(\underbrace{0.0901L})^2 = \underbrace{0.8161atm2}_{mol}$
 $b = \frac{1}{3}Vc = \underbrace{-.0901L}_{3 mol} = \underbrace{0.030L}_{mol}$

Obtención de a y b de Van der Waals

Modelo

$$p {=} \frac{RT}{\left(\overline{V} {-} b\right)} {-} \left[\frac{a}{\overline{V}^2}\right]$$

R (atmL/molK) 0.082

Modelo

$$a = 3pc\overline{Vc}^2$$
 $b = \frac{\overline{Vc}}{3}$

a atmL²/mol² 0.81629 b L/mol 0.03002

Independiente de volumen crítico

Modelo

$$a = \frac{27R^2Tc^2}{64pc} \qquad b = \frac{RTc}{8pc}$$

a atmL²/mol² 1.34828 b L/mol 0.03859

Calcular V Nz en un sistema (civado a 300 K p = 5 atm 2 moles Contrastar Vs el modelo i deal.

$$V^{3} - V^{2}\left(nb + \frac{hRT}{P}\right) + \frac{Van^{2}}{P} - \frac{anb}{P} = 0$$

V ³	V ²	V	Cte
1	-9.918200	1.111920	-0.086952

V ideal (L) 9.8400

 $V = \frac{NRT}{P}$

Α-	1		
8=	-9.91820		
C+	1.11192		
D-	-0.08695		
Expresión	_	decimales	
Expresson	4	decircates	
Expresion	Peal		
Capresion V ₁	Real 9.80571	Imaginaria	+9.8057
			+9.8057

Volumen real (tablas) Mezclado Vol real dependiente de Vo Vol real Independiente de Vo Obtención de ecuación cúbica del volumen tipo Van der Waals Introducir los valores en las celdas de color amarillo 300.000 T (K) 2.0000 n (mol) 5.0000 p (atm) 1.3899 a (atmL2/mol2) 0.0391 b (L/mol) 0.0820 R (atmL/molK) Cte 9.918200 1.111920 V ideal (L) 9.8400 Resolución de volumen cúbico tipo AV3+BV2+CV+D=0 A--9.91820 8-1.11192 C= -0.08695 D= decimales Expresión 4

Real Imaginaria

V₁= 9.80571 +9.8057

V₂= 0.05625 0.07552452813 +0.0562+0.0755j

V₃= 0.05625 -0.07552452813 +0.0562-0.0755j

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020
Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419

Volumen real (tablas)

Mezclado

Vol real dependiente de Vo

Vol real Independiente de Vc

Obtención de ecuación cúbica del volumen tipo Van der Waals

Introducir los valores en las celdas de color amarillo

T (K)	300.000
n (mol)	2.0000
p (atm)	5.0000
a (atmL²/mol²)	0.8161
b (L/mol)	0.0300
R (atmL/molK)	0.0820

V ³	V ²	V	Cte
1	-9.900000	0.652880	-0.039173

V ideal (L) 9.8400

Resolución de volumen cúbico tipo AV3+BV2+CV+D=0

A=	1	
B=	-9.90000	
C=	0.65288	
D=	-0.03917	
Expresión	4	decimales

	Real	Imaginaria	
V ₁ =	9.83402		+9.8340
V ₂ =	0.03299	0.05380424065	+0.0330+0.0538j
V ₂ =	0.03299	-0.05380424065	+0.0330-0.0538j

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020 Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419 Dependientes Vc

Volumen real (tablas)

Mezclado

Vol real dependiente de Vo

Vol real Independiente de Vo

Obtención de ecuación cúbica del volumen tipo Van der Waals

Introducir los valores en las celdas de color amarillo

T (K)	300.000
n (mol)	2.0000
p (atm)	5.0000
a (atmL²/mol²)	1.3482
b (L/mol)	0.0385
R (atmL/molK)	0.0820

N ₃	V ²	٧	Cte
1	-9.917000	1.078560	-0.083049

V ideal (L) 9.8400

Resolución de volumen cúbico tipo AV3+BV2+CV+D=0

A=	1	
B*	-9.91700	
C=	1.07856	
D=	-0.08305	
Expresión	4	decimales

	Real	Imaginaria	
V ₁ =	9.80789		+9.8079
V ₂ =	0.05455	0.07410527565	+0.0546+0.0741j
V _z =	0.05455	-0.07410527565	+0.0546-0.0741j

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020
Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419

a yb Independiente de Nz

T>Ta

p < pc

300 K > 126.25 K

5atm < 33.54 atm

gasided

Mezclado (yi)

$$Q_{M} = \sum_{i=1}^{N} \left[\overline{\alpha_{i}} \right]_{2}^{2}$$
 $b_{M} = \sum_{i=1}^{N} b_{i} y_{i}^{2}$
 $V^{3} - V^{2} \left(nb_{n} + \frac{hRT}{P} \right) + \frac{Va_{n}^{2}}{P} - \frac{a_{n}n}{P} b_{M} = 0$

Propiedades Fisicoquímicas de sustancias		
oxígeno		
31.999	g/mol	
154.600	K	
49.800	atm	
0.0734	L/mol	
90.200	K	
54.400	K	
6.713e+0	a	
-8.790e-7	b	
4.170e-6	c	
-2.544e-9	d	
io 15.4075	A	
734.5500	В	
-6.4500	C	
	oxígeno 31.999 154.600 49.800 0.0734 90.200 54.400 6.713e+0 -8.790e-7 4.170e-6 -2.544e-9 15.4075 734.5500	

Aire Yi Nz =0.81 Y0z = 0.19

Obtención de a y b de Van der Waals

Modelo

$$p = \frac{RT}{(\overline{V}-b)} - \left[\frac{a}{\overline{V}^2}\right]$$

R (atmL/molK) 0.082

Modelo

$$a = 3pc\overline{Vc}^2$$
 $b = \frac{\overline{Vc}}{3}$

atmL2/mol2 L/mol

0.80490 0.02447

Independiente de volumen crítico

Modelo

$$a = \frac{27R^2Tc^2}{64pc}$$
 $b = \frac{RTc}{8pc}$

atmL2/mol2

L/mol

1.36145 0.03182

Obtención d	le propiedad	les reales	en un gas ó	de mezclad	lo binario y t	ernario
	Intro	ducir los valor	es en las celdas de	color amarillo		
Componente	M (g/mol)	m (g)	pc (atm)	Tc (K)	Vc (L(mol)	ni
MalanoZ	28.00	78.08	33.54	126.26	0.0901	2.7886
Etal 2	32.00	20.95	49.80	154.60	0.0734	0.6547
	44.00	0.00	41.90	369.80	0.2030	0.0000
					n total	3.4433

R (atmL/molK) 0.0820 Independiente de Vc Dependiente de Vc a (atmL²/mol²) a (atmL2/mol2) Componente b (L/mol) yi b (L/mol) y 0.8168 0.0300 0.8099 1.3483 0.0386 1.0000 Metano 0.8049 0.0245 1.3614 0.0318 0.1901 Etano 5.1800 0.0677 0.0000 9.2583 0.0905 Propano

	De	pendiente de V	′c	
a _M (atmL ² /mol ²)	b _M (L/mol)	pc _M (atm)	Tc _M (K)	Vc _M (L/mol)
0.8146	0.0290	36.6316	131.6485	0.0869

Independiente de Vc				
a _M (atmL²/mol²)	b _M (L/mol)	pc _M (atm)	Tc _M (K)	Vc _M (L/mol)
1.3508	0.0373	36.6316	131.6485	0.0869

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2019

Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419

$$Q_{M} = \left[y_{0z}(\alpha_{0z})^{1/2} + y_{Nz}(\alpha_{Nz})^{2/2}\right]^{2}$$

bm = 902 b02 + 9N2 bN2

Independiente de Vc

Aire a 300 K
$$p = 5atm$$

 $9Nz = 0.81$
 $90z = 0.19$ $h = 3.4433$

obtener volumen.

Volumen real (tablas)

Mezclado

Vol real dependiente de Vo

Vol real Independiente de Vo

Obtención de ecuación cúbica del volumen tipo Van der Waals

Introducir los valores en las celdas de color amarillo

T (K)	300
n (mol)	3.4433
p (atm)	5
a _M (atmL ² /mol ²)	1.3508
b _M (L/mol)	0.0373
R (atmL/molK)	0.082

V ³	V ²	٧	Cte
1	-17.069265	3.202975	-0.411362

V ideal (L) 16.9408

Resolución de volumen cúbico tipo AV3+BV2+CV+D=0

Δ=	1	
B=	-17.06927	
C=	3.20297	
D=	-0.41136	
Expresión	2	decimales

	Real	Imaginaria	
V ₁ =	16.88097		+16.88
V ₂ =	0.09415	0.1245	+0.09+0.12j
V ₃ =	0.09415	-0.1245	+0.09-0.12j

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020 Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419 Volumen real (tablas) Mezclado Vol real dependiente de Vc Vol real Independiente de Vc

Obtención de ecuación cúbica del volumen tipo Van der Waals

Introducir los valores en las celdas de color amarillo

T (K)	300
n (mol)	5.6011
p (atm)	5
a _M (atmL²/mol²)	1.3549
b _M (L/mol)	0.0352
R (atmL/molK)	0.082

N ₃	V ²	٧	Cte	
1	-27.754365	8.501085	-1.675509	

V ideal (L) 27.5573

Resolución de volumen cúbico tipo AV3+BV2+CV+D=0

A=	1	
B=	-27.75437	
C=	8.50109	
D=	-1.67551	
Expresión	2	decimales

	Real	Imaginaria	
V ₁ =	27.44686		+27.45
V ₂ =	0.15375	0.1934	+0.15+0.19j
V ₂ =	0.15375	-0.1934	+0.15-0.19j

Dr. Juan Carlos Vázquez Lira UNAM FES Zaragoza 2020 Con apoyo del programa DGAPA-UNAM-PAPIME PE-200419