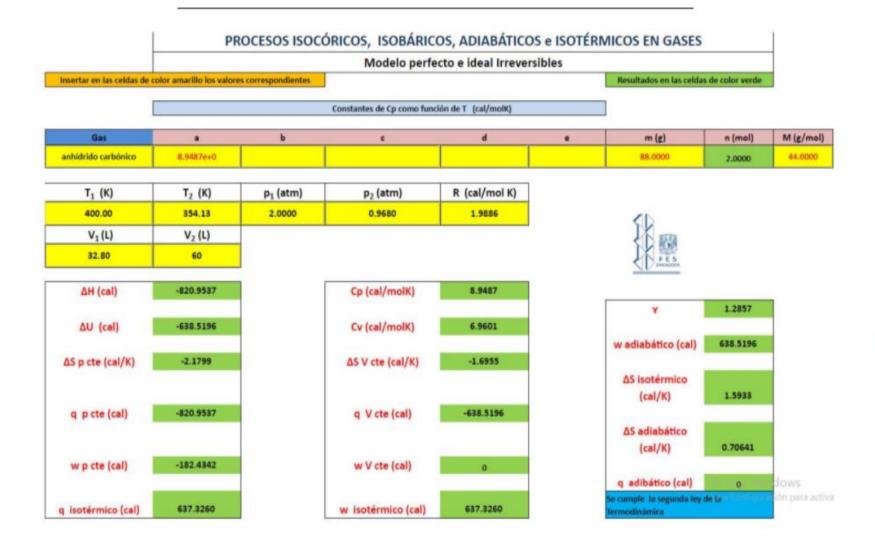
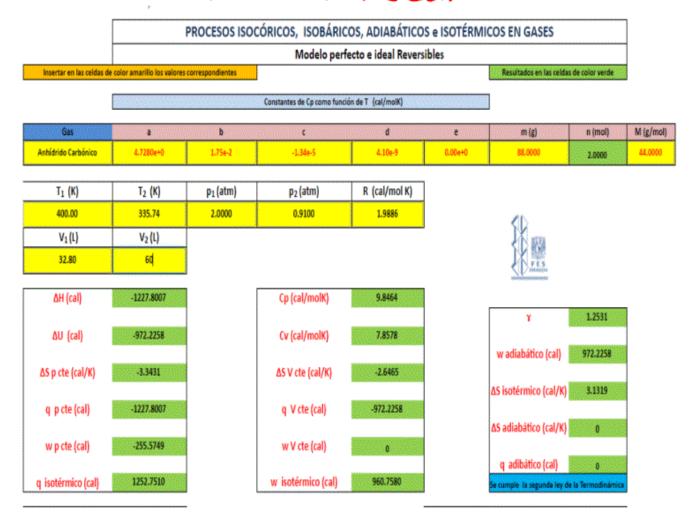
Clase 39 9 Noviembre 2020

Título de la nota 04/11/2020

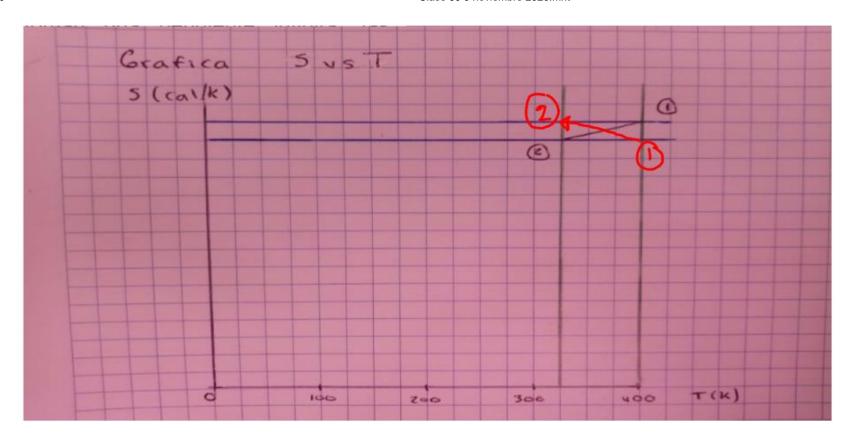

Calc	ulando V ₁	proceso	Calculando V	adiabático	
p ₁ (atm)	2.000	→	Y	Y 1.2884	
V ₁ (L)	32.800	\rightarrow	V ₂ (L)	60.000	Expansión
T ₁ (K)	400.000	\rightarrow	T ₂ (K)	336.052	
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	
Calc	ulando T ₁	proceso	Calculando T	adiabática	
p ₁ (atm)	2.000	→	¥	1.2884	
V ₁ (L)	32.800	→	V ₂ (L)	60.000	Expansión
T ₁ (K)	400.000	→	T ₂ (K)	336.052	
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	
Calc	ulando p ₁	proceso	Calculando p ₂	adiabática	
p ₁ (atm)	2.000	→	p ₂ (atm)	0.91854	Expansión
V ₁ (L)	32.800	→	V ₂ (L)	60.000	<1b
T ₁ (K)	400.000	\rightarrow	Y	1.2884	
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	F E S ZARAGOZA
Calculando n ₁		proceso	Calculando T ₂ adiabática		
p ₁ (atm)	2.000	→	p ₂ (atm)	0.91854	
V ₁ (L)	32.800	→	¥	1.2884	
T ₁ (K)	400.000	→	T ₂ (K)	336.052	Expansión
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	
	R (atmL/molK)	0.0820	Cp (cal/molK)	8.8827	
			Cv (cal/mol/K)	6.8941	

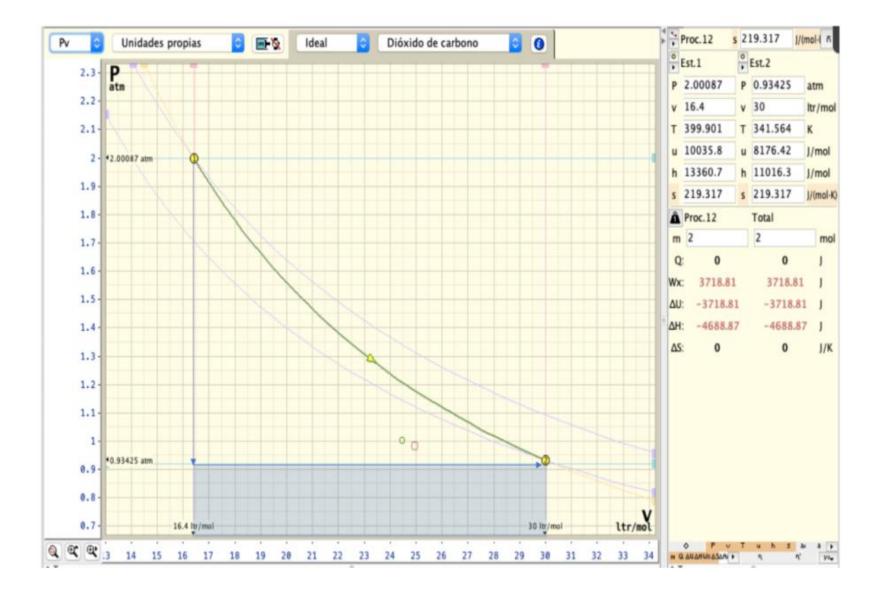
Dr. Juan Carlos Vázquez Lira 2020


Proceso		versible en gases de co Insertar en las celdas de			
Calculando V ₁		proceso	Calculando V ₂ adiabático		
p ₁ (atm)	2.000	\rightarrow	Y	1.2884	
V ₁ (L)	32.800	→	V ₂ (L)	60.0002	Expansión
T ₁ (K)	400.000	→	T ₂ (K)	353.743	
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	
Calo	ulando T ₁	proceso	Calculando T	adiabática	
p ₁ (atm)	2.000	→	Y	1.2884	
V ₁ (L)	32.800	→	V ₂ (L)	60.000	Expansión
T ₁ (K)	400.000	→	T ₂ (K)	353.743	
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	
Calculando p ₁		proceso	Calculando p ₂ adiabática		
p ₁ (atm)	2.000	→	p₂ (atm)	0.96690	Expansión
V ₁ (L)	32.800	→	V ₂ (L)	60.000	4 D
T ₁ (K)	400.000	→	Y	1.2884	掛霧
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	F E S ZARAGOZA
Calculando n ₁		proceso	Calculando T ₂	adiabática	***************************************
p ₁ (atm)	2.000	→	p ₂ (atm)	0.96690	
V ₁ (L)	32.800	→	Y	1.2884	
T ₁ (K)	400.000	→	T ₂ (K)	353.743	Expansión
n ₁ (mol)	2.000	→	n ₂ (mol)	2.000	
	R (atmL/molK)	0.0820	Cp (cal/molK)	8.8827	
			Cv (cal/mol/K)	6.8941	

Dr. Juan Carlos Vázquez Lira 2020

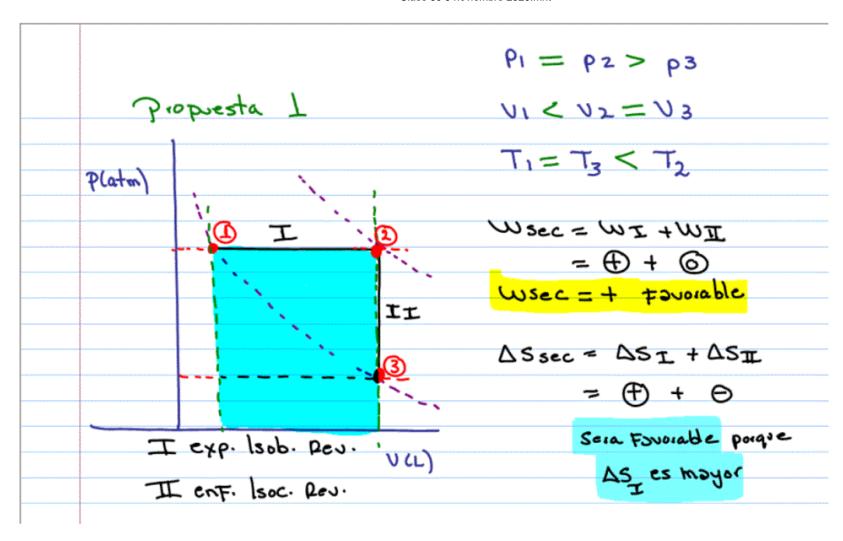
✓ Modelo perfecto Reversible. PROCESOS ISOCÓRICOS, ISOBÁRICOS, ADIABÁTICOS e ISOTÉRMICOS EN GASES Modelo perfecto e ideal Reversibles Insertar en las celdas de color amarillo los valores correspondientes Resultados en las celdas de color verde Constantes de Cp como función de T (cal/molK) M (g/mol) Gas • m (g) n (mol) Anhidrido carbónico 8.9487e+0 88.0000 44.0000 2.0000 T₁ (K) T₂ (K) p₁ (atm) p₂ (atm) R (cal/mol K) 400.00 336.61 2.0000 0.9200 1,9886 V1 (L) V2 (L) 32.80 60 Cp (cal/molK) -1134.5162 8.9487 ΔH (cal) 1.2857 -882.4015 6.9601 ΔU (cal) Cv (cal/molK) 882,4015 w adiabático (cal) ΔS p cte (cal/K) -3.0880 ΔS V cte (cal/K) -2.4018 ΔS isotérmico 3.0884 (cal/K) -1134.5162 -882,4015 q p cte (cal) q V cte (cal) ΔS adiabático (cal/K) -252.1147 w p cte (cal) w V cte (cal) q adibático (cal) Se cumple la segunda ley de la q isotérmico (cal) 1235.3641 w isotérmico (cal) 960,7580 fermodinámica Dr. Juan Carlos Vázquez Lira 2020 Con apoyo del programa UNAM-DGAPA-PAPIME PE-20419

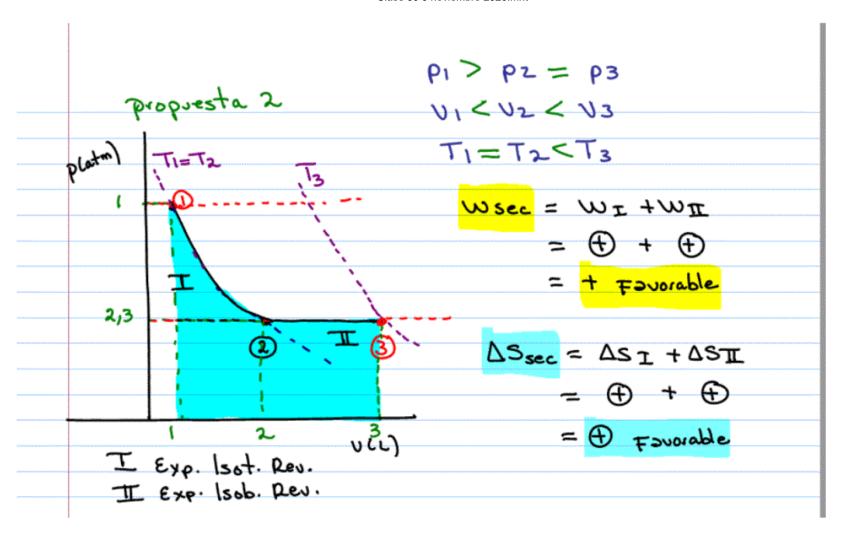


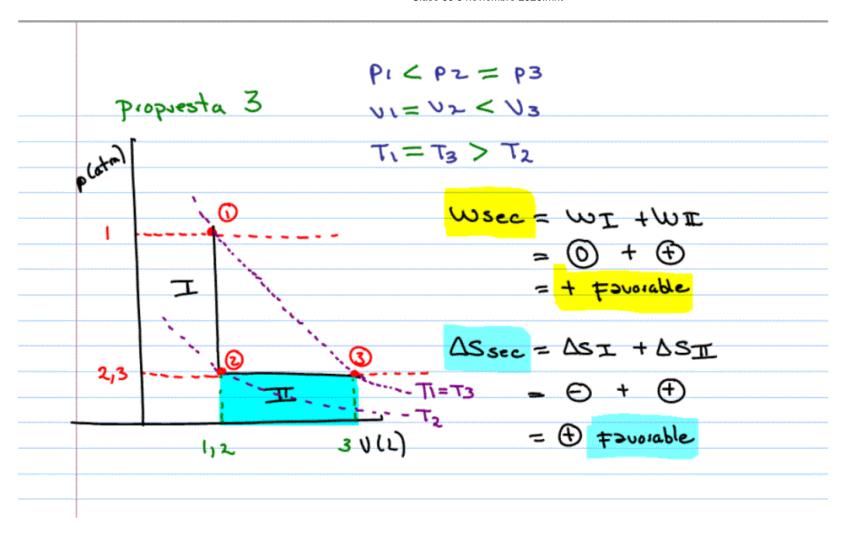

modelo ideal

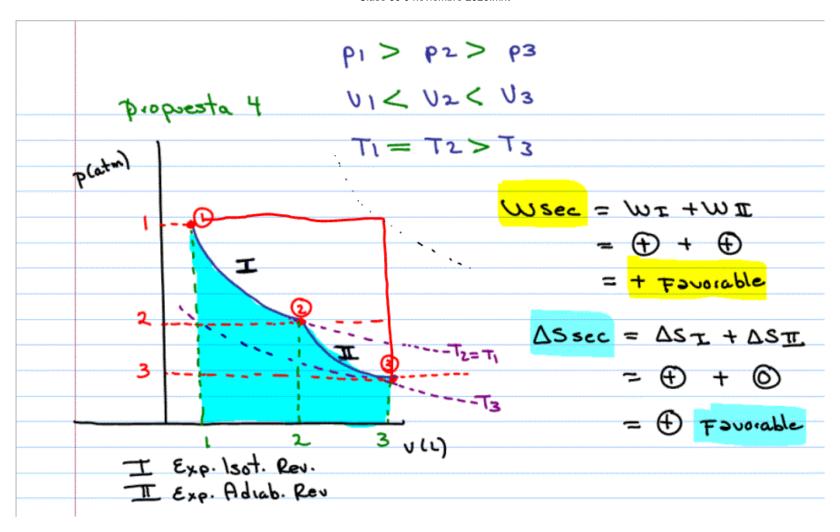


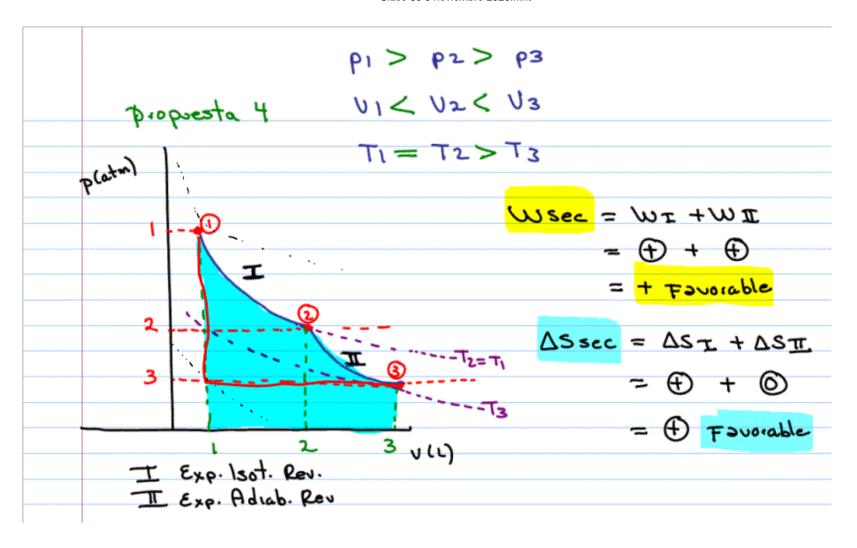
modelo ideal.

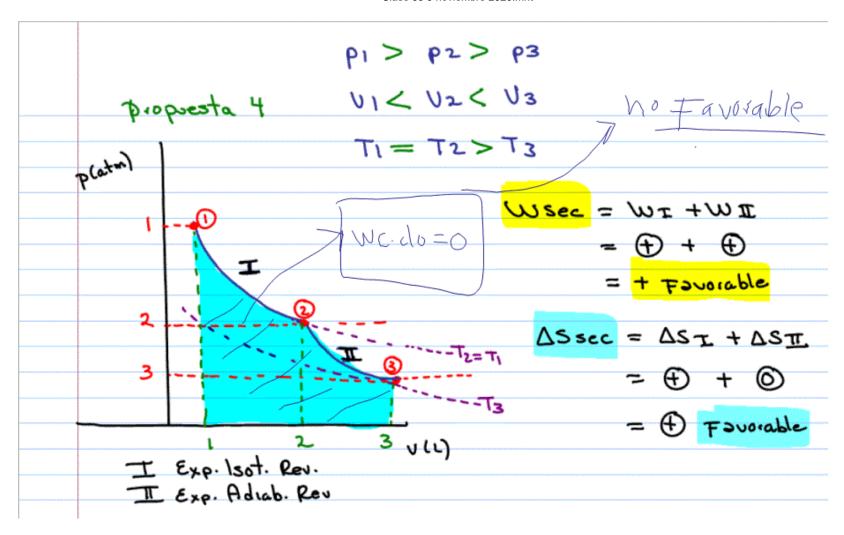

	PROCESOS ISO	CÓRICOS, ISOBÁRICO	OS, ADIABÁTICO	S e ISOTÉRMI	COS EN GASES		
Modelo perfecto e ideal Irreversibles							
color amarillo los valores	correspondientes		knimenne si enemenne kalimojo kne ride ini eliministrade in		Resultados en las celdas	de color verde	
		Constantes de Cp como funció	in de T (cal/molK)]		
a	b	t e	d	e	m (g)	n (mol)	M (g/mol)
4.7280e+0	1.75e-2	-1.34e-5	4.10e-9	0.00e+0	88,0000	2.0000	44.0000
				1	***************************************		
T ₂ (K)	p ₁ (atm)	p ₂ (atm)	R (cal/mol K)				
354.00	2.0000	1.0000	1.9880		d b		
V ₂ (L)					拟蛇		
60					以 麗		
					2		
-886.7986		Cp (cal/molK)	9.8464				
					Y	1.2530	
-703.9026		Cv (cal/molK)	7.8584				
					w adiabático (cal)	703.9026	
-2.3541		ΔS V cte (cal/K)	-1.8684				
					ΔS isotérmico (cal/K)	1.6460	
-886.7986		q V cte (cal)	-703.9026		** - #- * ** - * - 100		
103 0000		w V eta (call)			AS adiabatico (cai/K)	0.53278	
-102.0300		w v cte (car)	0		n adibático (cal)		
658.3946		w isotérmico (cal)	658.3946				
	a 4.7280e+0 T2 (K) 354.00 V2 (L) 60 -886.7986 -703.9026 -2.3541 -886.7986	a b 4.7280e+0 1.75e-2 T2 (K) p1 (atm) 354.00 2.0000 V2 (L) 60 -886.7986 -703.9026 -2.3541 -886.7986	Modelo perfet color amarillo los valores correspondientes Constantes de Cp como función a b c 4.7280e+0 1.75e-2 -1.34e-5 T2 (K) p1 (atm) p2 (atm) 354.00 2.0000 1.0000 V2 (L) 60 Cp (cal/molK) -703.9026 Cv (cal/molK) -2.3541 ΔS V cte (cal/K) -886.7986 q V cte (cal) -182.8960 w V cte (cal)	Modelo perfecto e ideal Irrever Constantes de Cp como función de T (cal/molK) a b c d 4.10e-9 T₂ (K) p₁ (atm) p₂ (atm) R (cal/mol K) 354.00 2.0000 1.0000 1.9880 V₂ (L) 60 -886.7986 Cy (cal/molK) 9.8464 -703.9026 Cv (cal/molK) 7.8584 -2.3541 ΔS V cte (cal/K) -1.8684 -886.7986 q V cte (cal) -703.9026 -182.8960 w V cte (cal) 0	Modelo perfecto e ideal Irreversibles Constantes de Cp como función de T (cal/molK) a b c d e 4.7280e+0 1.75e-2 -1.34e-5 4.10e-9 0.00e+0 T₂ (K) p₁ (atm) p₂ (atm) R (cal/mol K) 354.00 2.0000 1.0000 1.9880 V₂ (L) 60 -886.7986 Cy (cal/molK) 9.8464 -703.9026 Cy (cal/molK) 7.8584 -2.3541 ΔS V cte (cal/K) -1.8684 -886.7986 q V cte (cal) -703.9026 -182.8960 w V cte (cal) 0	Constantes de Cp como función de T (cal/molK) B	Modelo perfecto e ideal Irreversibles Resultados en las celdas de color verde

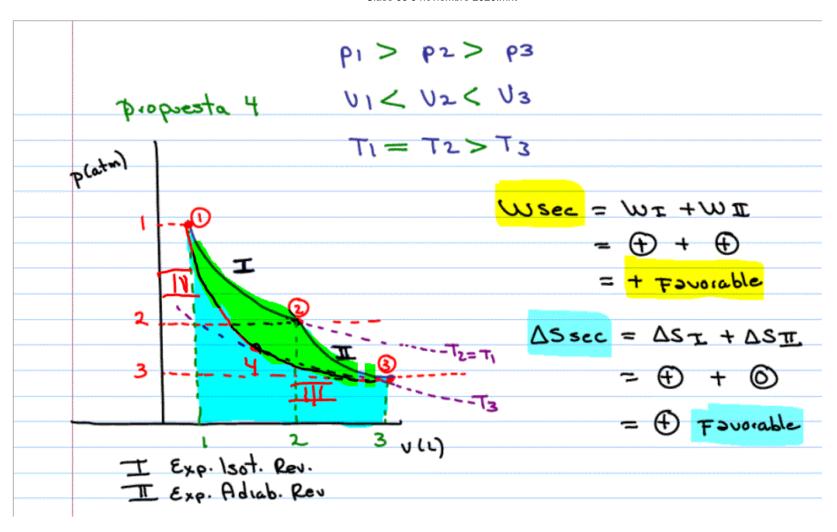


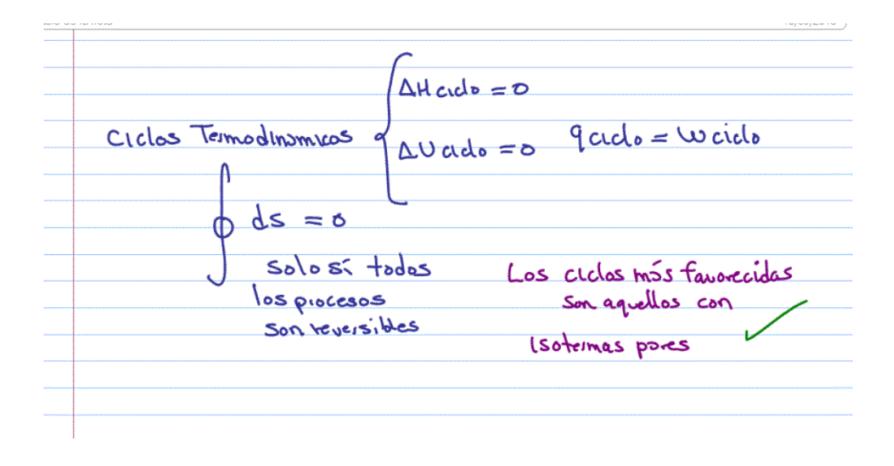


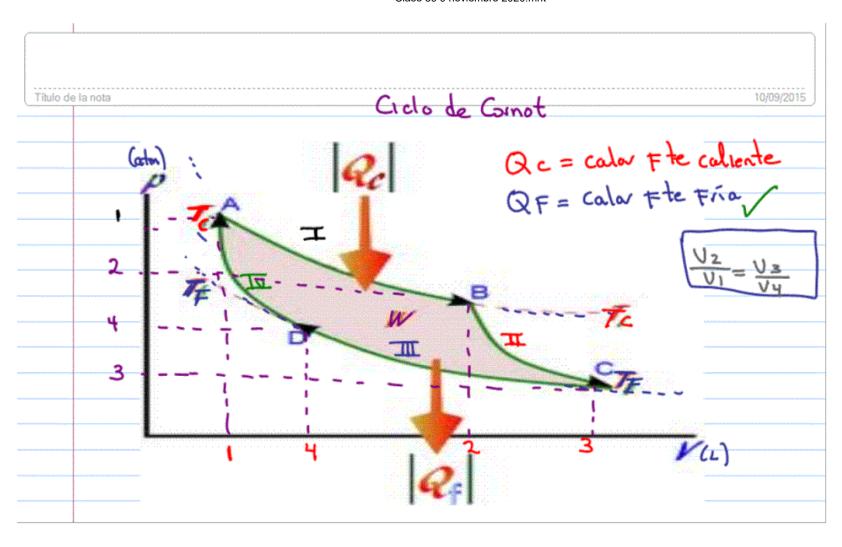












	AH aido = 0
Ciclos Termodinamicos	Duado = o gado = waido
ds = 0	
Solos	
los pioces	son aquellos con
Son hever	sibles (sotemas pores

pone de:
Predecir las variables de estado

	Calculo de Funciones termodinamicas							
	9	N	AU	ΔH	AS			
工	nRTc Inuz q caliente	q calente	0	0	nR In UZ			
I	0	<u>nr</u> (ΤΕ-Τα) 1-γι - Δυ	n CvdT	n ScpdT TF	0			
III	nRTFIN YH 9 Fria	q.Fria	0	0	nRIN VY			
M	0	ne (TC-TF) I-R - DU	n Str dt To	n ste TF	0			
Total	gaido =		0	0	0			