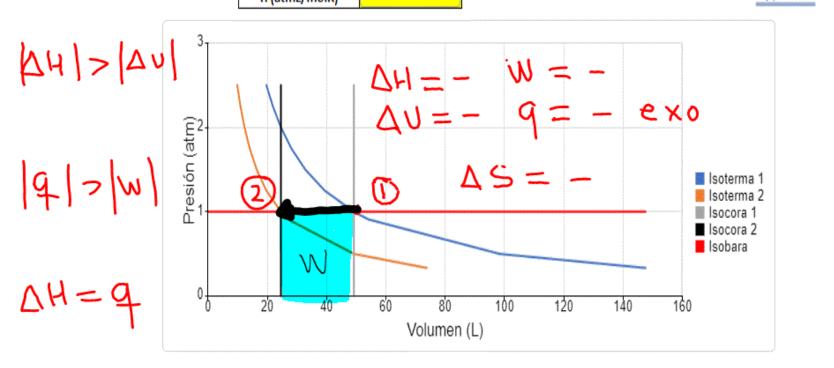
Clase 20 14 octubre 2020

l'itulo de la nota

14/10/2020

Monoatómico


Diatómico

Triatómico

$$C_P - C_V = R$$

Modelo perfecto Cp y (v son independientes de T

|                      | Proceso isobárico     | en gases de comp     | portamiento per      | fecto ó ideal en si   | stemas cerrados   |
|----------------------|-----------------------|----------------------|----------------------|-----------------------|-------------------|
|                      | Instrucción: I        | nsertar en las celda | s de color amarill   | lo los valores corres | pondientes        |
| Calc                 | ulando V <sub>1</sub> | proceso              | Calcula              | ndo V <sub>2</sub>    |                   |
| p <sub>1</sub> (atm) | 1.000                 | ÷                    | p <sub>2</sub> (atm) | 1.000                 | Compresión        |
| V <sub>1</sub> (L)   | 49.200                | ÷                    | V <sub>2</sub> (L)   | 24.600                |                   |
| T <sub>1</sub> (K)   | 600.000               | ÷                    | T <sub>2</sub> (K)   | 300.000               | Nr.               |
| n <sub>1</sub> (mol) | 1.000                 | →                    | n <sub>2</sub> (mol) | 1.000                 |                   |
|                      | R (atmL/molK)         | 0.082                |                      |                       | F E S<br>ZARAGOZA |



Comp. Isub. p1-p2 = cte.
n1-pn2 = cte cervado T1->T2 T1->T2 V1-312 V1-12  $T_2 = \frac{T_1 V_2}{V_1} \quad V_2 = \frac{V_1 T_2}{T_1}$ 

|                           | Proceso isobárico | o en gases de cor   | mportamiento p            | erfecto en sist   | emas cerrado | •       |
|---------------------------|-------------------|---------------------|---------------------------|-------------------|--------------|---------|
|                           | Instrucción: Inse | ertar en las celdas | de color amarillo         | los valores corre | spondientes  |         |
| Calculando V <sub>1</sub> |                   | proceso             | Calculando V <sub>2</sub> |                   |              |         |
| p <sub>1</sub> (atm)      | 1.000             | ÷                   | p <sub>2</sub> (atm)      | 1.000             | Com          | oresión |
| V <sub>1</sub> (L)        | 49.200            | $\rightarrow$       | V <sub>2</sub> (L)        | 24.600            |              |         |
| T <sub>1</sub> (K)        | 600.000           | $\rightarrow$       | T <sub>2</sub> (K)        | 300.000           |              |         |
| n <sub>1</sub> (mol)      | 1.000             | →                   | n <sub>2</sub> (mol)      | 1.000             |              |         |
|                           | R (J/molK)        | 8.314               |                           |                   |              |         |
| C <sub>v</sub> (J/molK)   | 20.785            |                     | Compresión                | Temperatura       | disminuye    | ·       |
| C <sub>p</sub> (J/mol/K)  | 29.099            |                     | Compresión                |                   |              |         |
| Elegir tipo de gas        |                   | Diatómico           |                           | Volumen           | disminuye    |         |



| Com      | presión   |   |                         |
|----------|-----------|---|-------------------------|
| ΔH (J)   | -8729.700 |   |                         |
| ΔU (J)   | -6235.500 |   |                         |
| ΔS (J/K) | -20.170   |   |                         |
| q (J)    | -8729.700 |   |                         |
| w (J)    | -2492.595 |   |                         |
| w (J)    | -2494.200 |   |                         |
| q        | <         | 0 | Exotérmico              |
| w        | <         | 0 | Disminución de volumen  |
| ΔS       | <         | 0 | Disminución de entropía |

$$C_P = \frac{1}{2}R = \frac{1}{2}(8.314 \text{ J/mol K})$$
 $C_V = \frac{1}{2}R = \frac{1}{2}(8.314 \text{ J/mol K})$ 

Diatómico 
$$\overline{CP} = 29.09 \text{ J/mol K}$$
 $\overline{CV} = 20.785 \text{ J/mol K}$ 

$$\Delta H = N \overline{C}p (Tz-Ti)$$
  
=  $(I_{M} \cdot I_{N})(29.09 \overline{J} | M_{0} I_{N})(300-600) K$   
 $\Delta H = -8727.0 \overline{J}$ 

$$\Delta U = N CV (T2 - TI)$$

$$= (|mol)(20.785 J/mol)(300-600)K$$

$$= -6235.5 J$$

$$\Delta S = N Cp | N T2 TI$$

$$= |mol \left( (29.09 J/mol)K) (|n \frac{300 K}{600 K}) \right)$$

$$= -20.164 J$$

$$9 = \Delta H$$
  
= - 8727 J

$$W = P(Vz-VI)$$
=  $1 \text{ atm} (zy.6 - yq.2) L$ 
=  $(2y.6 \text{ atm} L) (\frac{1.01325 \times 10^5 \text{ N/m}^2}{\text{atm}}) (\frac{1m^3}{16^3 L})$ 
=  $-2yq2.59 \text{ J}$ 

$$U = 9 - W \qquad 9 = \Delta H$$

$$W = \Delta H - \Delta U = -2y942 \text{ J}$$

|                                       |                                          | Instrucción: Insertar en las | celdas de color amarillo los         | valores correspondier | ntes     |       |
|---------------------------------------|------------------------------------------|------------------------------|--------------------------------------|-----------------------|----------|-------|
| Calculando V <sub>1</sub> proces      |                                          | proceso                      | Calculand                            | lo V <sub>2</sub>     |          |       |
| p <sub>1</sub> (atm)                  | 1.000                                    | $\rightarrow$                | p₂ (atm)                             | 1.000                 | Compr    | esión |
| V <sub>1</sub> (L)                    | 49.200                                   | <b>→</b>                     | V <sub>2</sub> (L)                   | 24.600                |          |       |
| T <sub>1</sub> (K)                    | 600.000                                  | $\rightarrow$                | T <sub>2</sub> (K)                   | 300.000               |          |       |
| n <sub>1</sub> (mol)                  | 1.000                                    | ÷                            | n <sub>2</sub> (mol)                 | 1.000                 |          |       |
|                                       | R (J/molK)                               | 8.314                        |                                      |                       |          |       |
|                                       |                                          |                              |                                      | Temperatura           | dismi    | nuye  |
|                                       |                                          | Compresión                   |                                      |                       |          |       |
| Especificar el gas empleado Hidrógeno |                                          |                              | Volumen                              | dismi                 |          |       |
| Cp como función de T (cal/molK)       |                                          | а                            | b                                    | C                     | d        |       |
|                                       |                                          | 6.483                        | 2.22E-03                             | -3.30E-06             | 1.83E-09 |       |
| Cp=a+bT                               |                                          |                              | _                                    |                       |          |       |
|                                       | 500)K                                    | Compresión                   |                                      |                       |          |       |
| (r) H                                 | -8758.310                                | 20                           |                                      |                       |          |       |
| (r) n                                 | -6264.110                                |                              |                                      |                       |          |       |
| s (J/K)                               | -23.004                                  |                              |                                      |                       | _        | ~~~~  |
|                                       | -8758.310                                | IX PES                       |                                      |                       | L        |       |
| (1)                                   | -2492.595                                | ZARAGOZA                     |                                      |                       |          |       |
| (1)<br>(1)                            |                                          |                              |                                      |                       |          |       |
| (J)                                   | -2494.200                                |                              |                                      |                       |          |       |
|                                       | -2494.200<br><                           | 0                            | Exotérmico                           |                       |          |       |
| (J)<br>(J)                            | NAMES OF TAXABLE PARTY OF TAXABLE PARTY. | 0                            | Exotérmico<br>Disminución de volumen | ,                     |          |       |

|                                                                                         |                      | Instrucción: Insertar en las | celdas de color amarillo los va | lores correspondien | ites       |      |
|-----------------------------------------------------------------------------------------|----------------------|------------------------------|---------------------------------|---------------------|------------|------|
| Calculando V <sub>1</sub> proceso                                                       |                      | Calculando                   | V <sub>2</sub>                  |                     |            |      |
| p <sub>1</sub> (atm)                                                                    | 1.000                | $\rightarrow$                | p <sub>2</sub> (atm)            | 1.000               | Compresión |      |
| V <sub>1</sub> (L)                                                                      | 49.200               | →                            | V <sub>2</sub> (L)              | 24.600              |            |      |
| T <sub>1</sub> (K)                                                                      | 600.000              | →                            | T <sub>2</sub> (K)              | 300.000             |            |      |
| n <sub>1</sub> (mol)                                                                    | 1.000                | <b>→</b>                     | n <sub>2</sub> (mol)            | 1.000               |            |      |
|                                                                                         | R (J/molK)           | 8.314                        |                                 |                     |            |      |
|                                                                                         |                      |                              |                                 | Temperatura         | dismi      | nuye |
|                                                                                         |                      |                              | Compresión                      |                     |            |      |
| Especificar el gas empleado Hidrógeno  Cp como función de T (cal/molK)  Cp=a+bT+cT²+dT³ |                      | Hidrógeno                    |                                 | Volumen             | dismi      |      |
|                                                                                         |                      | a                            | b                               | С                   | d          |      |
|                                                                                         |                      | 6.483                        | 2.22E-03                        | -3.30E-06           | 1.83E-09   |      |
|                                                                                         |                      |                              | _                               |                     |            |      |
|                                                                                         |                      | Compresión                   |                                 |                     |            |      |
| H (1)                                                                                   | -8758.310            | NIV.                         |                                 |                     |            |      |
| O (1)                                                                                   | -6264.110<br>-23.004 |                              |                                 |                     |            |      |
| (1)<br>S (1/K)                                                                          | -8758.310            |                              |                                 |                     |            |      |
| (1)                                                                                     | -2492,595            | F E S                        |                                 |                     |            |      |
| (1)                                                                                     | -2494.200            | interiorienteronomen         |                                 |                     |            |      |
| q                                                                                       | <                    | 0                            | Exotérmico                      |                     |            |      |
|                                                                                         |                      | _                            |                                 |                     |            |      |
| w                                                                                       | <                    | 0                            | Disminución de volumen          | I                   |            |      |

$$\int_{1}^{2} dH = N C p \int_{1}^{3} dT$$

$$= N \left[ \alpha + bT + cT^{2} + dT^{3} \right] dT$$

$$= N \left[ \alpha \int_{1}^{3} dT + b \int_{1}^{3} T dT + c \int_{1}^{3} T^{2} dT + d \int_{1}^{3} dT \right]$$

$$\triangle H = N \left[ \alpha \left( T_{2} - T_{1} \right) + \frac{b}{2} \left( T_{2}^{2} - T_{1}^{2} \right) + \frac{c}{3} \left( T_{2}^{3} - T_{1}^{3} \right) + \frac{d}{4} \left( T_{2}^{3} - T_{1}^{3} \right) \right]$$

$$\triangle M = I_{mol} \left[ 6.483 \left( 3.00 - 6.00 \right) + \frac{2.272 \times 10}{2} \left( 3.06 - 6.00^{2} \right) - \frac{3.30 \times 10}{3} \left( 3.06 - 6.00^{2} \right) + \frac{1.88 \times 10}{4} \left( 3.00 - 6.00^{2} \right) \right]$$

$$= -2.092.28 \quad \text{col} \quad \left( \frac{4.186 J}{col} \right) = -3758.31 J$$

$$\int_{1}^{2} dU = N C_{V} \int_{0}^{1} dT$$

$$R = 1.9886 \text{ cal/molk}$$

$$\Delta U = N \left[ (a - R) + b + c + c + d + d + d \right] \int_{0}^{1} dT$$

$$\Delta U = N \left[ (a - R) \int_{1}^{1} dT + b \int_{1}^{1} dT + c \int_{1}^{1} dT + d \int_{1}^{1} dT \right]$$

$$\Delta U = N \left[ (a - R) \int_{1}^{1} dT + b \int_{1}^{1} dT + c \int_{1}^{1} dT + d \int_{1}^{1} dT \right]$$

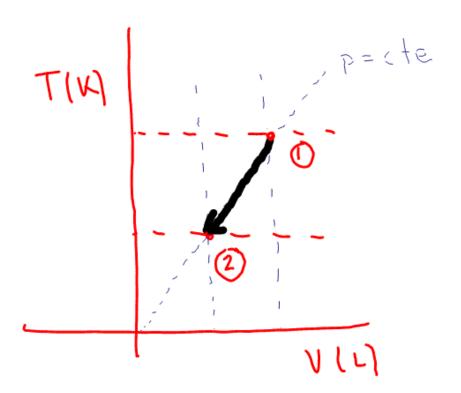
$$\Delta U = N \left[ (a - R) \int_{1}^{1} dT + b \int_{1}^{1} dT + c \int_{1}^{1} dT + d \int_{1}^{1} dT \right]$$

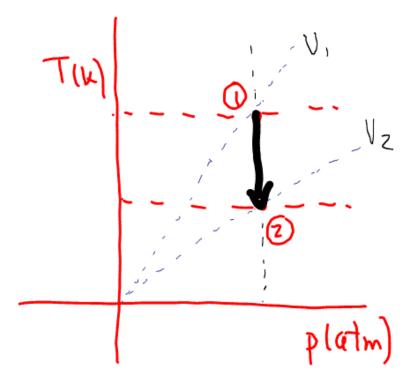
$$\Delta U = N \left[ (a - R) \int_{1}^{1} dT + b \int_{1}^{1} dT + c \int_{1}^{1} dT + d \int_{1}^{1} dT \right]$$

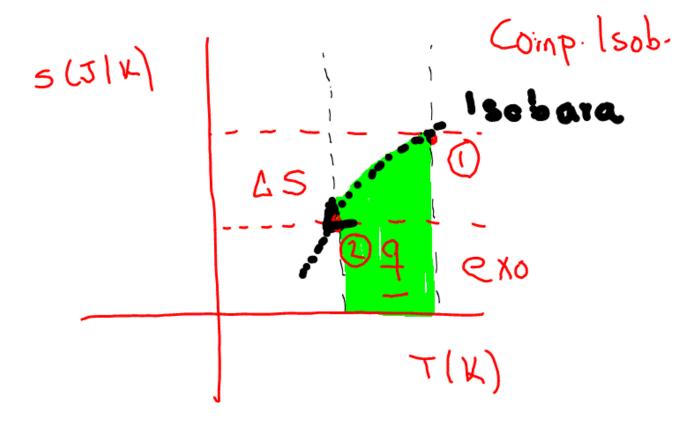
$$\Delta U = N \left[ (a - R) \int_{1}^{1} dT + b \int_{1}^{1} dT + c \int_{1}^{1} dT + d \int_{1}^{1} dT \right]$$

$$= -1495 \cdot 70 \cdot Cal \left[ \frac{4 \cdot 186 \cdot J}{Cal} \right] = -6241.03$$

$$ds = \frac{t_{4}}{T_{2}T}$$


$$\int_{1}^{2} ds = \int_{1}^{2} \frac{n(p d T)}{T}$$


$$\Delta S = n \left[ \frac{a}{T} dT + \frac{b}{T} dT + \frac{d}{T} dT + \frac{d}{d} dT + \frac{d}$$


$$\Delta S = |mod \left( \frac{300}{483} | \frac{300}{600} + \frac{7.22 \cdot 10^{3}}{100} (300 - 600) - \frac{3.30 \times 10^{4}}{2} (300 - 600) \right)$$

$$= -4.823 \quad \frac{1.83 \times 10^{4}}{100} \left( \frac{300}{300} - 600 \right)$$

$$= -4.823 \quad \frac{1.865}{100} \left( \frac{4.1865}{100} \right) = -20.1615$$





